An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

M. Scetbon
 L. Meunier
 Y. Romano

ENSAE

FACEBOOKAI Dauphine \mid PSL*

IP PARIS

Thirty-ninth International Conference on Machine Learning

* Authors contributed equally.

Conditional Independence Testing

A Simple Example:

This graph shows that the outcome does not depend on the advice given the action taken by the agent:

$$
X \Perp Y \mid Z
$$

Question: How to infer from data such relationships between random variables?
Test for Conditional Independence:
Goal: Given i.i.d samples $\left(X_{i}, Z_{i}, Y_{i}\right)_{i=1}^{n} \sim P_{X Z Y}$ where $P_{X Z Y}$ is the law of (X, Z, Y) a random vector, we aim at testing the null Hypothesis $H_{0}: X \Perp Y \mid Z$ against $H_{1}: X \mathbb{\Perp} Y \mid Z$.
\longrightarrow We design a new kernel-based test statistic to test for conditional independence

Definition:

Let k be a definite positive, characteristic, continuous, bounded and analytic kernel on \mathbb{R}^{d} and $p \geq 1$ an integer. Let also P, Q two probability distributions on \mathbb{R}^{d} and denote respectively $\mu_{P, k}$ and $\mu_{Q, k}$ their mean embeddings. Then

$$
d_{p, J}(P, Q):=\left[\frac{1}{J} \sum_{j=1}^{J}\left|\mu_{P, k}\left(\mathbf{t}_{j}\right)-\mu_{Q, k}\left(\mathbf{t}_{j}\right)\right|^{p}\right]^{\frac{1}{p}}
$$

where $\left(\mathbf{t}_{j}\right)_{j=1}^{J}$ are sampled independently from any absolutely continuous Borel probability measure is random metric on the space of probability measures.

A First Characterization of the Conditional Independence:

- Let $d_{x}, d_{y}, d_{z} \geq 1, \mathscr{X}:=\mathbb{R}^{d_{x}}, \mathscr{Y}:=\mathbb{R}^{d_{y}}$, and $\mathscr{Z}:=\mathbb{R}^{d_{z}}$. Let (X, Z, Y) be a random vector on $\mathscr{X} \times \mathscr{Z} \times \mathscr{Y}$ with law $P_{X Z Y}$.
- Denote $\ddot{X}:=(X, Z), \ddot{X}:=\mathscr{X} \times \mathscr{\not}$ and let us define for all mesurable $(A, B) \in \mathscr{B}(\ddot{X}) \times \mathscr{B}(\mathscr{Y})$:

$$
P_{\ddot{X} \otimes Y \mid Z}(A \times B):=\mathbb{E}_{Z}\left[\mathbb{E}_{\ddot{X}}\left[\mathbf{1}_{A} \mid Z\right] \mathbb{E}_{Y}\left[\mathbf{1}_{B} \mid Z\right]\right] .
$$

Proposition: $\quad d_{p, J}\left(P_{X Z Y}, P_{\ddot{X} \otimes Y \mid Z}\right)=0$ if and only if $X \perp Y \mid Z$ a.s.

A first Oracle Statistic

- For all $\left(\mathbf{t}^{(1)}, t^{(2)}\right) \in \ddot{X} \times \mathscr{Y}$, we have $\mu_{P_{\ddot{X} \otimes Y \mid Z}, k_{\ddot{x}} \cdot k_{y}}\left(\mathbf{t}^{(1)}, t^{(2)}\right)=\mathbb{E}_{Z}\left[\mathbb{E}_{\ddot{X}}\left[k_{\ddot{X}}\left(\mathbf{t}^{(1)}, \ddot{X}\right) \mid Z\right] \mathbb{E}_{Y}\left[k_{\mathscr{y}}\left(t^{(2)}, Y\right) \mid Z\right]\right]$
- For all $\left(\mathbf{t}^{(1)}, t^{(2)}\right) \in \ddot{\mathscr{X}} \times \mathscr{Y}$, we have $\mu_{P_{X Z Y}, k_{\ddot{x}} \cdot k_{\mathscr{y}}}\left(\mathbf{t}^{(1)}, t^{(2)}\right)=\mathbb{E}\left[k_{\ddot{X}}\left(\mathbf{t}^{(1)}, \ddot{X}\right) k_{\mathscr{y}}\left(t^{(2)}, Y\right)\right]$
- For all $\left(\mathbf{t}^{(1)}, t^{(2)}\right) \in \ddot{\mathscr{X}} \times \mathscr{Y}$, we define the witness function:

$$
\Delta\left(\mathbf{t}^{(1)}, t^{(2)}\right):=\mu_{P_{\ddot{X} \otimes Y \mid Z}, k_{\ddot{x}} \cdot k_{y}}\left(\mathbf{t}^{(1)}, t^{(2)}\right)-\mu_{P_{X Z Y}, k_{\ddot{x}} \cdot k_{y}}\left(\mathbf{t}^{(1)}, t^{(2)}\right)
$$

Reformulation of the Witness Function:

$$
\Delta\left(\mathbf{t}^{(1)}, t^{(2)}\right)=\mathbb{E}\left[\left(k_{\ddot{X}}\left(\mathbf{t}^{(1)}, \ddot{X}\right)-\mathbb{E}_{\ddot{X}}\left[k_{\ddot{X}}\left(\mathbf{t}^{(1)}, \ddot{X}\right) \mid Z\right]\right)\left(k_{\mathscr{y}}\left(t^{(2)}, Y\right)-\mathbb{E}_{Y}\left[k_{\mathscr{y}}\left(t^{(2)}, Y\right) \mid Z\right]\right)\right]
$$

A First Estimate of the Witness Function:

$$
\Delta_{n}\left(\mathbf{t}^{(1)}, t^{(2)}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(k_{\ddot{\mathscr{X}}}\left(\mathbf{t}^{(1)}, \ddot{x}_{i}\right)-\mathbb{E}_{\ddot{X}}\left[k_{\ddot{X}}\left(\mathbf{t}^{(1)}, \ddot{X}\right) \mid z_{i}\right]\right)\left(k_{\mathscr{Y}}\left(t^{(2)}, y_{i}\right)-\mathbb{E}_{Y}\left[k_{\mathscr{Y}}\left(t^{(2)}, Y\right) \mid z_{i}\right]\right)
$$

Definition of Our Oracle Statistic

$$
\mathrm{Cl}_{n, p}:=\sum_{j=1}^{J}\left|\Delta_{n}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right)\right|^{p}
$$

Proposition:

. Under $H_{0}, \sqrt{n} \mathrm{Cl}_{n, p} \rightarrow\|X\|_{p}^{p}$ where $X \sim \mathscr{N}\left(0_{J}, \Sigma\right), \Sigma:=\mathbb{E}\left(\mathbf{u}_{1} \mathbf{u}_{1}^{T}\right), \mathbf{u}_{1}:=\left(u_{1}(1), \ldots, u_{1}(J)\right)^{T}$, $u_{i}(j):=\left(k_{\ddot{x}}\left(\mathbf{t}_{j}^{(1)}, \ddot{x}_{i}\right)-\mathbb{E}_{\ddot{X}}\left[k_{\ddot{x}}\left(\mathbf{t}_{j}^{(1)}, \ddot{X}\right) \mid Z=z_{i}\right]\right) \times\left(k_{y}\left(t_{j}^{(2)}, y_{i}\right)-\mathbb{E}_{Y}\left[k_{y}\left(t_{j}^{(2)}, Y\right) \mid Z=z_{i}\right]\right)$, and the convergence is in law.
. Under $H_{1}, \lim _{n \rightarrow \infty} P\left(n^{p / 2} \mathrm{Cl}_{n, p} \geq q\right)=1$ for any $q \in \mathbb{R}$.
Consistency of the test

Problems:

- The oracle statistic involves unknown conditional means: $\mathbb{E}_{\ddot{X}}\left[k_{\ddot{X}}\left(\mathbf{t}_{j}^{(1)}, \ddot{X}\right) \mid Z=\cdot\right]$ and $\mathbb{E}_{Y}\left[k_{y}\left(t_{j}^{(2)}, Y\right) \mid Z=\cdot\right]$
- The asymptotic distributions involved an unknown covariance matrix Σ

Approximation of the Oracle Statistic

We estimate these conditional means using Regularized Least-squares Estimators:

$$
\begin{aligned}
h_{j, r}^{(2)} & :=\min _{h \in H_{\mathscr{A}}^{2, j}} \frac{1}{r} \sum_{i=1}^{r}\left(h\left(z_{i}\right)-k_{\mathscr{y}}\left(t_{j}^{(2)}, y_{i}\right)\right)^{2}+\lambda_{j, r}^{(2)}\|h\|_{H_{\mathscr{A}}^{2, j}}^{2} \\
h_{j, r}^{(1)} & :=\min _{h \in H_{\mathscr{\not}}^{1, j}} \frac{1}{r} \sum_{i=1}^{r}\left(h\left(z_{i}\right)-k_{\ddot{X}}\left(\mathbf{t}_{j}^{(1)},\left(x_{i}, z_{i}\right)\right)\right)^{2}+\lambda_{j, r}^{(1)}\|h\|_{H_{\not{\not}}^{1, j}}^{2}
\end{aligned}
$$

Approximate Estimate of the Witness Function

$$
\widetilde{\Delta}_{n, r}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right):=\frac{1}{n} \sum_{i=1}^{n}\left(k_{\left.\left.\dot{x},\left(\mathbf{t}_{j}^{(1)}, \ddot{x}_{j}\right)-h_{j, r}^{(1)}\left(z_{i}\right)\right) \times\left(k_{y}\left(t_{j}^{(2)}, y_{i}\right)-h_{j, r}^{(2)}\left(z_{i}\right)\right), ~\right)}\right.
$$

Definition of our Approximate Statistic

$$
\widetilde{\mathrm{Cl}}_{n, r, p}:=\sum_{j=1}^{J}\left|\widetilde{\Delta}_{n, r}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right)\right|^{p}
$$

Proposition:

Under some mild assumptions on the family of distributions considered and for well chosen r_{n}, we obtain:
. Under $H_{0}, \sqrt{n} \widetilde{\mathrm{Cl}}_{n, r_{n}, p} \rightarrow\|X\|_{p}^{p}$ where $X \sim \mathcal{N}\left(0_{J}, \Sigma\right)$
. Under $H_{1}, \lim _{n \rightarrow \infty} P\left(n^{p / 2} \widetilde{\mathrm{Cl}}_{n, r_{n}, p} \geq q\right)=1$ for any $q \in \mathbb{R}$.
It still involves the unknown covariance matrix

Normalized Version of Our Test Statistic

Denote $\widetilde{u}_{i, r}(j):=\left(k_{\ddot{x}}\left(\mathbf{t}_{j}^{(1)}, \ddot{x}_{i}\right)-h_{j, r}^{(1)}\left(z_{i}\right)\right)\left(k_{\mathscr{y}}\left(t_{j}^{(2)}, y_{i}\right)-h_{j, r}^{(2)}\left(z_{i}\right)\right), \widetilde{\mathbf{S}}_{n, r}:=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i, r}$ and $\quad \boldsymbol{\Sigma}_{n, r}:=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i, r} \widetilde{\mathbf{u}}_{i, r}^{T}$

$$
\widetilde{\mathrm{NCl}}_{n, r, p}:=\left\|\left(\Sigma_{n, r}+\delta_{n} \mid \mathrm{Id}_{J}\right)^{-1 / 2} \widetilde{\mathbf{S}}_{n, r}\right\|_{p}^{p}
$$

Proposition:

Under some mild assumptions on the family of distributions considered and for well chosen r_{n}, we obtain:
. Under $H_{0}, \sqrt{n} \widetilde{\mathrm{NCl}}_{n, r_{n}, p} \rightarrow\|X\|_{p}^{p}$ where $X \sim \mathcal{N}\left(0_{J}, \mathrm{Id}_{J}\right)$
. Under $H_{1}, \lim _{n \rightarrow \infty} P\left(n^{p / 2} \widetilde{\mathrm{NCl}}_{n, r_{n}, p} \geq q\right)=1$ for any $q \in \mathbb{R}$. Now we have a simple null asymptotic distribution

Results: We show that our test is the only one able to demonstrate that our method consistently controls the type-I error and obtains a power similar to the best SoTA tests.

Other results:

Thank you

We show experimentally our theoretical findings where our approximate statistic is able to recover the asymptotic distribution.

We show the effect of the parameter r which allows in practice to deal with the tradeoff between the computational time and the control of the type-I error.

We also explore the effects of p and J and show that our method is robust to the choice of p, and the performances of the test do not necessarily increase as J increases.

