An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

Thirty-ninth International Conference on Machine Learning

* Authors contributed equally.

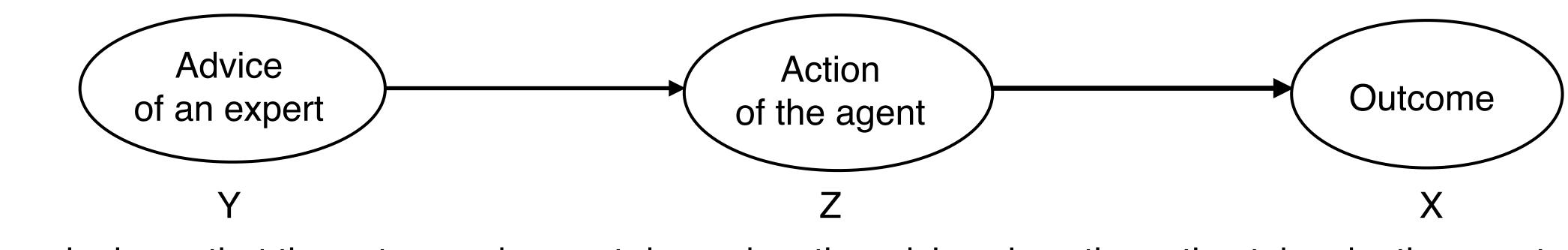
L. Meunier*

Y. Romano

Dauphine | PSL 😿

Conditional Independence Testing

<u>A Simple Example:</u>



This graph shows that the outcome does not depend on the advice given the action taken by the agent:

<u>Test for Conditional Independence:</u>

Goal: Given i.i.d samples $(X_i, Z_i, Y_i)_{i=1}^n \sim P_{XZY}$ where P_{XZY} is the law of (X, Z, Y) a random vector, we aim at testing the null Hypothesis $H_0: X \perp Y \mid Z$ against $H_1: X \perp Y \mid Z$.

 $X \perp \!\!\!\perp Y \mid Z$

We design a new kernel-based test statistic to test for conditional independence

<u>*t P Distance Between Mean Embeddings*</u>

Definition:

Then

$$d_{p,J}(P,Q) :=$$

where $(\mathbf{t}_{j})_{j=1}^{J}$ are sampled independently from any absolutely continuous Borel probability measure is random metric on the space of probability measures.

<u>A First Characterization of the Conditional Independence:</u>

- Let $d_x, d_y, d_z \ge 1$, $\mathcal{X} := \mathbb{R}^{d_x}, \mathcal{Y} := \mathbb{R}^{d_y}$, and $\mathcal{X} :=$ with law P_{XZY} .
- Denote $\dot{X} := (X, Z), \, \dot{\mathcal{X}} := \mathcal{X} \times \mathcal{X}$ and let us define for all mesurable $(A, B) \in \mathscr{B}(\dot{\mathcal{X}}) \times \mathscr{B}(\mathcal{Y})$:

$$P_{\ddot{X}\otimes Y|Z}(A\times B):=[$$

 $d_{p,J}(P_{XZY}, P_{\ddot{X}\otimes Y|Z})$ Proposition:

Let k be a definite positive, characteristic, continuous, bounded and *analytic* kernel on \mathbb{R}^d and $p \ge 1$ an integer. Let also P, Q two probability distributions on \mathbb{R}^d and denote respectively $\mu_{P,k}$ and $\mu_{Q,k}$ their mean embeddings.

$$|\mu_{P,k}(\mathbf{t}_j) - \mu_{Q,k}(\mathbf{t}_j)|^p$$

$$= \mathbb{R}^{d_z}$$
. Let (X, Z, Y) be a random vector on $\mathscr{X} \times \mathscr{Z} \times \mathscr{Y}$

 $\mathbb{E}_{Z}\left[\mathbb{E}_{X}\left[\mathbf{1}_{A} \mid Z\right]\mathbb{E}_{Y}\left[\mathbf{1}_{B} \mid Z\right]\right]$

$$Y = 0$$
 if and only if $X \perp Y | Z$ a.s.

<u>A first Oracle Statistic</u>

- For all $(\mathbf{t}^{(1)}, t^{(2)}) \in \ddot{\mathcal{X}} \times \mathscr{Y}$, we have $\mu_{P_{\ddot{\mathcal{X}} \otimes Y|Z}, k_{\ddot{\mathcal{X}}} \cdot k_{\mathscr{Y}}}(\mathbf{t}^{(1)})$
- For all $(\mathbf{t}^{(1)}, t^{(2)}) \in \ddot{\mathcal{X}} \times \mathscr{Y}$, we have $\mu_{P_{XZY}, k_{\ddot{\mathcal{X}}} \cdot k_{\mathscr{Y}}}(\mathbf{t}^{(1)}, \mathbf{t}^{(1)})$
- For all $(\mathbf{t}^{(1)}, t^{(2)}) \in \ddot{\mathcal{X}} \times \mathcal{Y}$, we define the witness function:

$$\Delta(\mathbf{t}^{(1)}, t^{(2)}) := \mu_{P_{\ddot{x} \otimes Y|Z}, k_{\ddot{x}} \cdot k_{\mathscr{Y}}}(\mathbf{t}^{(1)}, t^{(2)}) - \mu_{P_{XZY}, k_{\ddot{x}} \cdot k_{\mathscr{Y}}}(\mathbf{t}^{(1)}, t^{(2)})$$

<u>Reformulation of the Witness Function:</u>

$$\Delta(\mathbf{t}^{(1)}, t^{(2)}) = \mathbb{E}\left[\left(k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) - \mathbb{E}_{\ddot{X}}\left[k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) \mid Z\right]\right)\left(k_{\mathscr{Y}}(t^{(2)}, Y) - \mathbb{E}_{Y}\left[k_{\mathscr{Y}}(t^{(2)}, Y) \mid Z\right]\right)\right]$$

A First Estimate of the Witness Function:

$$\Delta_{n}(\mathbf{t}^{(1)}, t^{(2)}) = \frac{1}{n} \sum_{i=1}^{n} \left(k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{x}_{i}) - \mathbb{E}_{\ddot{X}} \left[k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) \,|\, z_{i} \right] \right) \left(k_{\mathscr{Y}}(t^{(2)}, y_{i}) - \mathbb{E}_{Y} \left[k_{\mathscr{Y}}(t^{(2)}, Y) \,|\, z_{i} \right] \right)$$

Definition of Our Oracle Statistic

$$CI_{n,p} := \sum_{j=1}^{J} \left| \Delta_n(\mathbf{t}_j^{(1)}, t_j^{(2)}) \right|^p$$
Asymptotic Distribution
here $X \sim \mathcal{N}(0_j, \Sigma), \Sigma := \mathbb{E}(\mathbf{u}_1 \mathbf{u}_1^T), \mathbf{u}_1 := (u_1(1), \dots, u_1(J))^T,$
 $\psi(\mathbf{t}_j^{(1)}, \ddot{X}) | Z = z_i \right] \times \left(k_{\mathscr{Y}}(t_j^{(2)}, y_i) - \mathbb{E}_Y \left[k_{\mathscr{Y}}(t_j^{(2)}, Y) | Z = z_i \right] \right), \text{ and}$
 $q) = 1 \text{ for any } q \in \mathbb{R}.$
Consistency of the test

Proposition:

- Under H_0 , $\sqrt{n} \operatorname{Cl}_{n,p} \to ||X||_p^p$ wh $u_i(j) := \left(k_{\ddot{\mathcal{X}}}(\mathbf{t}_j^{(1)}, \ddot{x}_i) \mathbb{E}_{\ddot{X}} \left[k_{\ddot{\mathcal{X}}}^p \right] \right)$ the convergence is in law.
- Under H_1 , $\lim P(n^{p/2}CI_{n,p} \ge q)$ $n \rightarrow \infty$

Problems:

- The oracle statistic involves unknown conditional measurements
- The asymptotic distributions involved an unknown covariance matrix Σ

ans:
$$\mathbb{E}_{\ddot{X}}\left[k_{\ddot{\mathcal{X}}}(\mathbf{t}_{j}^{(1)}, \ddot{X}) | Z = \cdot\right]$$
 and $\mathbb{E}_{Y}\left[k_{\mathscr{Y}}(t_{j}^{(2)}, Y) | Z\right]$

Approximation of the Oracle Statistic

We estimate these conditional means using *Regularized Least-squares Estimators*:

$$h_{j,r}^{(2)} := \min_{h \in H_{\mathscr{X}}^{2,j}} \frac{1}{r} \sum_{i=1}^{r} \left(h(z_i) - k_{\mathscr{Y}}(t_j^{(2)}, y_i) \right)^2 + \lambda_{j,r}^{(2)} \|h\|_{H_{\mathscr{X}}^{2,j}}^2$$
$$h_{j,r}^{(1)} := \min_{h \in H_{\mathscr{X}}^{1,j}} \frac{1}{r} \sum_{i=1}^{r} \left(h(z_i) - k_{\mathscr{X}}(\mathbf{t}_j^{(1)}, (x_i, z_i)) \right)^2 + \lambda_{j,r}^{(1)} \|h\|_{H_{\mathscr{X}}^{1,j}}^2$$

Approximate Estimate of the Witness Function

$$\widetilde{\Delta}_{n,r}(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}) := \frac{1}{n} \sum_{i=1}^{n} \left(k_{\ddot{\mathcal{X}}}(\mathbf{t}_{j}^{(1)}, \ddot{x}_{i}) - h_{j,r}^{(1)}(z_{i}) \right) \times \left(k_{\mathscr{Y}}(t_{j}^{(2)}, y_{i}) - h_{j,r}^{(2)}(z_{i}) \right)$$

Definition of our Approximate Statistic

$$\widetilde{\mathsf{CI}}_{n,r,p} := \sum_{j=1}^{J} \left| \widetilde{\Delta}_{n,r}(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}) \right|^{p}$$

Proposition: Under some *mild assumptions* on the family of distributions considered and for well chosen r_n , we obtain:

- Under H_0 , $\sqrt{n \operatorname{CI}_{n,r_n,p}} \to ||X||_p^p$ where $X \sim \mathcal{N}(0)$
- Under H_1 , $\lim P(n^{p/2}\widetilde{CI}_{n,r_n,p} \ge q) = 1$ for any q $n \rightarrow \infty$

Normalized Version of Our Test Statistic

Denote $\widetilde{u}_{i,r}(j) := (k_{\mathcal{X}}(\mathbf{t}_{i}^{(1)}, \ddot{x}_{i}) - h_{i,r}^{(1)}(z)$

$$\widetilde{\mathbf{X}}_{i,r}(\mathbf{x}_{j}^{(2)}, \mathbf{y}_{i}) - h_{j,r}^{(2)}(\mathbf{z}_{i})), \quad \widetilde{\mathbf{S}}_{n,r} := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i,r} \text{ and } \mathbf{\Sigma}_{n,r} := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i,r}$$
$$\widetilde{\mathsf{NCI}}_{n,r,p} := \|(\mathbf{\Sigma}_{n,r} + \delta_{n} \mathrm{Id}_{J})^{-1/2} \widetilde{\mathbf{S}}_{n,r}\|_{p}^{p}.$$

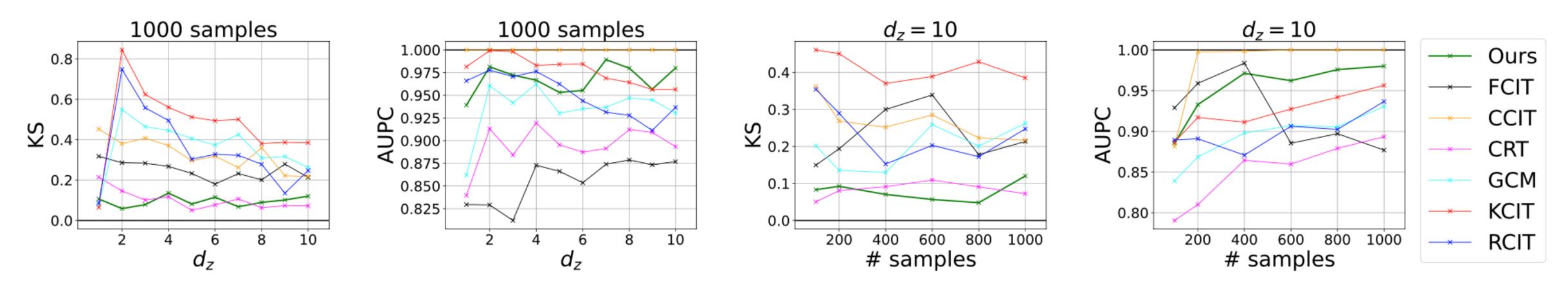
Proposition:

Under some *mild assumptions* on the family of distributions considered and for well chosen r_n , we obtain:

- Under H_0 , $\sqrt{n \operatorname{NCI}_{n,r_n,p}} \to ||X||_p^p$ where $X \sim \mathcal{N}(0_J, \operatorname{Id}_J)$
- Under H_1 , $\lim P(n^{p/2} \widetilde{NCI}_{n,r_n,p} \ge q) = 1$ for any $q \in \mathbb{R}$. Now we have a simple null asymptotic distribution $n \rightarrow \infty$

$$_{J}, \Sigma$$
 It still involves the unknown covariance matrix $q \in \mathbb{R}$.

Experimental results



Results: We show that our test is the only one able to demonstrate that our method consistently controls the type-I error and obtains a power similar to the best SoTA tests.

Other results:

Thank you

We show experimentally our theoretical findings where our approximate statistic is able to recover the asymptotic distribution.

We show the effect of the parameter *r* which allows in practice to deal with the tradeoff between the computational time and the control of the type-I error.

We also explore the effects of p and J and show that our method is robust to the choice of p, and the performances of the test do not necessarily increase as J increases.