Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs

M. Scetbon

Thirty-ninth International Conference on Machine Learning

G. Peyré

M. Cuturi

Gromov-Wasserstein

How to align points across two incomparable point clouds?

<u>Discrete Gromov-Wasserstein:</u>

- Discrete Distributions: *µ*
- Set of Couplings: $\Pi_{a,b} =$
- Cost Matrices: $A = (d_{\mathcal{X}}(x_i, x_{i'}))_{i,i'}$, $B = (d_{\mathcal{Y}}(y_j, y_{j'}))_{j,j'}$

 $GW_c((a, A), (b, B)) = \min_{P \in \Pi_{a, b}} (a, B)$

Not Comparable directly

$$\mathcal{Q}_{A,B}(P) := \sum_{i,i',j,j'} |A_{i,i'} - B_{j,j'}|^2 P_{i,j} P_{i',j'}$$

Hard to solve in practice:

- •GW is a *non convex* quadratic problem
- GW is *NP-hard* in general

Need for a fast solver approximating the GW cost

Prior Art: Entropic Regularization

Shannon Entropy: $H(P) = -\sum_{i,j} P_{i,j}(\log(P_{i,j}) - 1)$

 $GW_{c,\epsilon}((a, A), (b, B))$

Mirror Descent Scheme:

At each iteration:

- Update the cost matrix: $C = -4APB \in O(nm(n+m))$
- Update the kernel matrix: $K = e^{-C/\epsilon} \in \mathcal{O}(nm)$
- Solve Entropic OT using Sinkhorn: $P = \arg \min_{P \in \Pi_{a,b}} KL(P | | K) \in O(nm)$

In this work, we propose *instead* to directly constraint the coupling to admit a low-NN rank

$$) = \min_{P \in \Pi_{a,b}} \mathcal{Q}_{A,B}(P) - \epsilon H(P)$$

 $\begin{array}{l} n+m \\ 0 \\ KL(P||K) \\ \in \mathcal{O}(nm) \end{array} \right\} \text{Total Complexity per iteration:} \\ \mathcal{O}(nm(n+m)) \\ \mathcal{O}(nm(n+m)) \end{array}$

Low-Rank Gromov-Wasserstein

NN rank :
$$rk_{+}(M) := min \left\{ q \mid M = \sum_{i=1}^{q} R_{i}, \forall i, rk(R_{i}) = 1, \right\}$$

Low-NN Rank Couplings: $\Pi_{a,b}(r) := \{P \in \Pi_{a,b} \text{ s.t. } rk_+(P) \le r\}$

Definition of Low-rank Gromov-Wasserstein

Characterization of Low-NN Rank Couplings:

 $LGW_{c,r}((a, A), (b, B)) := \min_{P \in \Pi_{a,b}(r)} \mathcal{Q}_{A,B}(P)$

$\Pi_{a,b}(r) = \{ P \in \mathbb{R}^{n \times m} | P = Q \operatorname{Diag}(1/g) R^T, Q \in \Pi_{a,g}, R \in \Pi_{b,g}, g > 0 \text{ and } g \in \Delta_r \}$

Reparametrization of LGW

$$\begin{aligned} \mathsf{LGW}_r((a, A), (b, B)) &= \min_{(Q,R,g) \in \mathscr{C}_1(a,b,r) \cap \mathscr{C}_2(r)} \mathscr{Q}_{A,B}(Q\mathsf{Diag}(1/\operatorname{g})R^T) \\ & \text{where } \begin{cases} \mathscr{C}_1(a, b, r) \coloneqq \{(Q, R, g) \in \mathbb{R}_+^{n \times r} \times \mathbb{R}_+^{n \times r} \times (\mathbb{R}_+^{n})^r \text{ s.t. } Q\mathbf{1}_r = a, R\mathbf{1}_r = b\} \\ & \mathscr{C}_2(r) \coloneqq \{(Q, R, g) \in \mathbb{R}_+^{n \times r} \times \mathbb{R}_+^{n \times r} \times (\mathbb{R}_+)^r \text{ s.t. } Q^T\mathbf{1}_n = R^T\mathbf{1}_m = g\} \\ & \text{neme:} \\ & \in \mathscr{O}((n^2 + m^2)r) \\ \text{atrices: } C_1 &= -AQD_{1/g} \ , \ C_2 = R^TB \ , \ C_3 = \mathscr{D}(Q^TC_1C_2R) \\ & \text{perator extracting the diagonal of a squared matrix} \\ & \text{matrices: } K_1 = Q \odot e^{4\gamma C_1C_2RD_{1/g}} \ , \ K_2 = R \odot e^{4\gamma C_2^TC_1^TQD_{1/g}} \ , \ K_3 = g \odot e^{-4\gamma C_3^Tg^2} \\ & \text{perator transforming a vector } a \text{ into a diagonal matrix} \\ & \text{Barycenter problem using Dykstra: } (Q, R, g) = \arg\min_{(Q,R,g) \in \mathscr{C}_1(a,b,r) \cap \mathscr{C}_2(r)} \mathsf{KL}((Q, R, g)) \mid (K_1, K_2, K_2) \\ & \text{plexity per iteration: } \mathscr{O}((n^2 + m^2)r) \ll \mathscr{O}((n + m)nm) \text{ as soon as } r \ll \min(n,) \end{aligned}$$

Mirror Descent Sche

At each iteration:

- Update the cost mat where \mathscr{D} is the ope
- Update the kernel m where D_a is the ope
- Solve the convex Base

Total Comple

From a Quadratic Solver to a Linear Solver

Remark: The only operations which remains quadratic in the MD scheme described before is the updates of the cost matrices C_1 and C_2 .

By assuming that A and B admit low-rank structures, we obtain a linear time algorithm with respect to the number of samples.

Low-rank cost matrices:

If $A = A_1 A_2^T$ and $B = B_1 B_2^T$ with $A_1, A_2 \in \mathbb{R}^{n \times d}$ and $B_1, B_2 \in \mathbb{R}^{m \times d'}$ with $d, d' \ll \min(n, m)$ then updating the cost matrices can be done in linear time: and $C_2 = R^T B_1 B_2^T \in \mathcal{O}(mrd')$ → Total Complexity per iteration: $\mathcal{O}(r(nd + md')) \ll \mathcal{O}((n^2 + m^2)r)$ as soon as $d, d' \ll \min(n, m)$

$$C_1 = -A_1 A_2^T Q D_{1/g} \in \mathcal{O}(nrd)$$

Example: The squared Euclidean distance, or more generally any distance matrix.

Other results

We provide a quantitive bound and show the *non-asymptotic stationary convergence* of our algorithm. Roughly speaking, our algorithm requires $\mathcal{O}(1/\delta)$ iterations for a precision of δ .

<u>Problem</u>: We consider the single-cell alignment problem where we have access to two representations of the same cells. These representations are not directly comparable, and therefore we apply GW to recover the true matching.

Thank you

<u>Results</u>:

- faster than the Entropic approach.
- entropic method.

We observe that our method is able to obtain similar GW cost (and ever better) while being order of magnitude

• In addition, the quality of the coupling (measured by the FOSCTTM) is comparable to the one obtained by the

