Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs

M. Scetbon

G. Peyré

M. Cuturi

Thirty-ninth International Conference on Machine Learning

Gromov-Wasserstein

How to align points across two incomparable point clouds?

Discrete Gromov-Wasserstein:

- Discrete Distributions: $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \in \mathscr{M}_{1}^{+}(\mathscr{X}) \quad, \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}} \in \mathscr{M}_{1}^{+}(\mathscr{Y})$
- Set of Couplings: $\Pi_{a, b}=\left\{P \in \mathbb{R}_{+}^{n \times m}\right.$ s.t. $\left.P \mathbf{1}_{m}=a, P^{T} \mathbf{1}_{n}=b\right\}$
- Cost Matrices: $A=\left(d_{X}\left(x_{i}, x_{i^{\prime}}\right)\right)_{i, i^{\prime}}, \quad B=\left(d_{y}\left(y_{j}, y_{j^{\prime}}\right)\right)_{j, j^{\prime}}$

$$
G W_{c}((a, A),(b, B))=\min _{P \in \Pi_{a, b}} \mathbb{Q}_{A, B}(P):=\sum_{i, i, j, j, j^{\prime}}\left|A_{i, i^{\prime}}-B_{j, j^{\prime}}\right|^{2} P_{i, j} P_{i^{\prime}, j^{\prime}}
$$

Hard to solve in practice:

- GW is a non convex quadratic problem
- GW is NP-hard in general
\longrightarrow Need for a fast solver approximating the GW cost

Prior Art: Entropic Regularization

Shannon Entropy: $\mathrm{H}(P)=-\sum_{i, j} P_{i, j}\left(\log \left(P_{i, j}\right)-1\right)$

$$
G W_{c, \epsilon}((a, A),(b, B))=\min _{P \in \Pi_{a, b}} \mathbb{Q}_{A, B}(P)-\epsilon H(P)
$$

Mirror Descent Scheme:

At each iteration:

- Update the cost matrix: $C=-4 A P B \in \mathcal{O}(n m(n+m))$
- Update the kernel matrix: $K=e^{-C / \epsilon} \in \mathcal{O}(\mathrm{nm})$
- Solve Entropic OT using Sinkhorn: $P=\arg \min _{P \in \Pi_{a, b}} \mathrm{KL}(P \| K) \in \mathcal{O}(n m)$ \} Total Complexity per iteration: $O(n m(n+m))$

In this work, we propose instead to directly constraint the coupling to admit a low-NN rank

Low-Rank Gromov-Wasserstein

NN rank: $\mathrm{rk}_{+}(M):=\min \left\{q \mid M=\sum_{i=1}^{q} R_{i}, \forall i, \operatorname{rk}\left(R_{i}\right)=1, R_{i} \geq 0\right\}$

Low-NN Rank Couplings: $\quad \Pi_{a, b}(r):=\left\{P \in \Pi_{a, b}\right.$ s.t. $\left.\mathrm{rk}_{+}(P) \leq r\right\}$

Definition of Low-rank Gromov-Wasserstein

$$
\operatorname{LGW}_{c, r}((a, A),(b, B)):=\min _{P \in \Pi_{a, b}(r)} \mathbb{Q}_{A, B}(P)
$$

Characterization of Low-NN Rank Couplings:

$$
\Pi_{a, b}(r)=\left\{P \in \mathbb{R}_{+}^{n \times m} \mid P=Q \operatorname{Diag}(1 / g) R^{T}, Q \in \Pi_{a, g}, R \in \Pi_{b, g}, g>0 \text { and } g \in \Delta_{r}\right\}
$$

$$
\operatorname{LGW}_{r}((a, A),(b, B))=\min _{(Q, R, g) \in \mathscr{C}_{1}(a, b, r) \cap \mathscr{C}_{2}(r)} \mathbb{Q}_{A, B}\left(Q \operatorname{Diag}(1 / \mathrm{g}) R^{T}\right)
$$

$$
\text { where }\left\{\begin{array}{l}
\mathscr{C}_{1}(a, b, r):=\left\{(Q, R, g) \in \mathbb{R}_{+}^{n \times r} \times \mathbb{R}_{+}^{m \times r} \times\left(\mathbb{R}_{+}^{*}\right)^{r} \text { s.t. } Q \mathbf{1}_{r}=a, R \mathbf{1}_{r}=b\right\} \\
\mathscr{C}_{2}(r):=\left\{(Q, R, g) \in \mathbb{R}_{+}^{n \times r} \times \mathbb{R}_{+}^{m \times r} \times\left(\mathbb{R}_{+}\right)^{r} \text { s.t. } Q^{T} \mathbf{1}_{n}=R^{T} \mathbf{1}_{m}=g\right\}
\end{array}\right.
$$

Mirror Descent Scheme:

At each iteration:

- Update the cost matrices: $C_{1}=-A Q D_{1 / g}, C_{2}=R^{T} B, C_{3}=\mathscr{D}\left(Q^{T} C_{1} C_{2} R\right) \quad \in \mathcal{O}\left((n+m) r^{2}\right)$
where \mathscr{D} is the operator extracting the diagonal of a squared matrix
- Update the kernel matrices: $K_{1}=Q \odot e^{4 \gamma C_{1} C_{2} R D_{1 / g}}, K_{2}=R \odot e^{4 \gamma C_{2}^{T} C_{1}^{T} Q D_{1 / g}}, K_{3}=g \odot e^{-4 \gamma C_{3} / g^{2}}$ where D_{a} is the operator transforming a vector a into a diagonal matrix $\in \mathcal{O}((n+m) r)$
- Solve the convex Barycenter problem using Dykstra: $(Q, R, g)=\arg \min _{(Q, R, g) \in \mathscr{C}_{1}(a, b, r) \cap \mathscr{C}_{2}(r)} \mathrm{KL}\left((Q, R, g) \|\left(K_{1}, K_{2}, K_{3}\right)\right)$

Total Complexity per iteration: $\mathcal{O}\left(\left(n^{2}+m^{2}\right) r\right) \ll \mathcal{O}((n+m) n m)$ as soon as $r \ll \min (n, m)$

From a Quadratic Solver to a Linear Solver

Remark: The only operations which remains quadratic in the MD scheme described before is the updates of the cost matrices C_{1} and C_{2}.
\rightarrow By assuming that A and B admit low-rank structures, we obtain a linear time algorithm with respect to the number of samples.

Low-rank cost matrices:

If $A=A_{1} A_{2}^{T}$ and $B=B_{1} B_{2}^{T}$ with $A_{1}, A_{2} \in \mathbb{R}^{n \times d}$ and $B_{1}, B_{2} \in \mathbb{R}^{m \times d^{\prime}}$ with $d, d^{\prime} \ll \min (n, m)$ then updating the cost matrices can be done in linear time:

$$
C_{1}=-A_{1} A_{2}^{T} Q D_{1 / g} \in \mathcal{O}(\mathrm{nrd}) \quad \text { and } \quad C_{2}=R^{T} B_{1} B_{2}^{T} \in \mathcal{O}\left(\mathrm{mrd}^{\prime}\right)
$$

\longrightarrow Total Complexity per iteration: $\mathcal{O}\left(r\left(n d+m d^{\prime}\right)\right) \ll \mathcal{O}\left(\left(n^{2}+m^{2}\right) r\right)$ as soon as $d, d^{\prime} \ll \min (n, m)$
Example: The squared Euclidean distance, or more generally any distance matrix.

Other results

We provide a quantitive bound and show the non-asymptotic stationary convergence of our algorithm. Roughly speaking, our algorithm requires $\mathcal{O}(1 / \delta)$ iterations for a precision of δ.

Experiments

Problem: We consider the single-cell alignment problem where we have access to two representations of the same cells. These representations are not directly comparable, and therefore we apply GW to recover the true matching.

Thank you

Results:

- We observe that our method is able to obtain similar GW cost (and ever better) while being order of magnitude faster than the Entropic approach.
- In addition, the quality of the coupling (measured by the FOSCTTM) is comparable to the one obtained by the entropic method.

