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OPTIMAL TRANSPORT

Distributions: μ ∈ ℳ+
1 (𝒳) ν ∈ ℳ+

1 (𝒴) and

Cost function: c : 𝒳 × 𝒴 → ℝ

Couplings: Π(μ, ν) := {γ s . t . Π1♯γ = μ , Π2♯γ = ν}

Definition of Optimal Transport

Wc(μ, ν) = inf
γ∈Π(μ,ν) ∫𝒳×𝒴

c(x, y)dγ(x, y)

                   Optimal coupling1

μ

ν

γ

1: Graph was taken from Computational Optimal Transport book, written by Gabriel Peyré and Marco Cuturi



How to compute the OT in practice ?

• Costly to compute 𝒪(n3 log(n))  complexity LP:

• Not differentiable with respect to the measures 

Main issues

• Suffers from the curse of dimensionality

μ =
n

∑
i=1

ai δxi
ν =

m

∑
j=1

bj δyjDiscrete Distributions:

Discrete OT: Wc(μ, ν) = min
P ∈ ℝn×m

+

P1m = a, PT1n = b

⟨P, C⟩  where ∀i, j Ci,j = c(xi, yj)

 ,



Wc,ε(μ, ν) = inf
γ∈Π(μ,ν) ∫𝒳×𝒴

c(x, y)dγ(x, y) + εKL(γ | |μ ⊗ ν)Definition of the Regularized OT

Relative Entropy: KL(γ | |π) = ∫𝒳×𝒴
log ( dγ

dπ
(x, y)) dγ(x, y) + ∫𝒳×𝒴

(dπ(x, y) − dγ(x, y))

Approximation of OT lim
ε→0

Wc,ε(μ, ν) → Wc(μ, ν)

Advantages

• It is differentiable with respect to the measures

• It does not suffer from the curse of dimension

• It is faster to compute  Sinkhorn algorithm: 𝒪(n2)  per iteration

Entropic Regularization



Sinkhorn Algorithm

 computing KTu Kv and  requires 𝒪(n2)  algebraic operations

Cannot be applied for large scale problems

v ←
b

KTu
u ←

a
Kv

K = exp(−C/ε)

,

 where

 Until convergence, at each iteration compute :

P*ε = Diag(u)KDiag(v)Output:

Wc,ε(μ, ν) = min
P ∈ ℝn×m

+

P1m = a, PT1n = b

⟨P, C⟩ − εH(P) = εKL(P | |K)Discrete ROT:

The Sinkhorn algorithm converges iff all the entries of K  are positive



• Random version to approximate the ROT for usual cost functions

• Constructive and differentiable method to learn an adapted kernel   

Positive Random Features

k(x, y) = ∫u∈𝒰
φ(x, u)Tφ(y, u)dρ(u)Kernel of the form: ∀ x, u ∈ 𝒳 × 𝒰, φ(x, u) ∈ (ℝ+

* )p where

Positive low-rank Factorization: φθ(x) =
1

r
(φ(x, u1), . . . , φ(x, ur)) ∈ (ℝ+

* )p×rkθ(x, y) = ⟨φθ(x), φθ(y)⟩  where

θ = (u1, . . . , ur) ∈ 𝒰r  and ui ∼ ρ  i.i.d
{

Example: RBF Kernel e− ∥x − y∥2
2

ε = ( 4
πε )

d/2

∫u∈ℝd

exp (−2ε−1∥x − u∥2
2) exp (−2ε−1∥y − u∥2

2) du

Positive Low-rank Factorization of the Kernel



Positive Low-rank Factorization of the Kernel
Approximation of ROT:

Wcθ,ε(μ, ν) = min
P ∈ ℝn×m

+

P1m = a, PT1n = b

εKL(P | |Kθ)

ξ = [φθ(x1), …, φθ(xn)] ∈ (ℝ+
* )r×n ζ = [φθ(y1), …, φθ(ym)] ∈ (ℝ+

* )r×mKθ = ξTζ where , ,

•  Computing KT
θ u Kθv and  requires 𝒪(nr)  algebraic operations

Remarks:

• All the entries of  are positive                  the Sinkhorn algorithm convergesKθ

Wcθ,ε ≃ Wc,ε•  where c(x, y) = − ε log(k(x, y))

Example:  and therefore k(x, y) = e− ∥x − y∥2
ε c(x, y) = ∥x − y∥2



Let where , then with a probability , the Sinkhorn Algorithm with inputs ,  and 

 output a -approximation of the ROT distance in  algebraic operations.

ψ = sup
x,y,u

|φ(x, u)Tφ(y, u)/k(x, y) | 1 − τ Kθ a

b δ 𝒪̃ ( n
εδ3

∥C∥4
∞ψ2 log ( n

τ ))

Theorem

Positive Low-rank Factorization of the Kernel

 Constructive Positive Features: Differentiability

Let ,   ,  and   a differentiable map. 

Denote  . Then   and  are differentiable.

X = [x1, …, xn] ∈ ℝd×n μ(X) =
n

∑
i=1

aiδxi
ν =

m

∑
j=1

bj δyj
(x, θ) ∈ ℝd × ℝr → φθ(x) ∈ (ℝ*+)r

kθ(x, y) = ⟨φθ(x), φθ(y)⟩ θ → Wcθ,ε(μ(X), ν) X → Wcθ,ε(μ(X), ν)

Proposition

Learn an adapted kernel/cost function to compare two distributions via OT 



Experiments
• Efficiency vs. Approximation trade-off using positive features

• Using positive features to learn adversarial kernels in GANs

Thank you


