Linear Time Sinkhorn Divergence using Positive Features

M. Scetbon

M. Cuturi

XY Google Brain

O‘—YTEC
Q
o <
3 SOE
. -IP PARIS
= m
A (J
) N
\/ 4
/DEP’

SN,

9,‘ NEURAL INFORMATION
"'gi. . PROCESSING SYSTEMS
o Ok/.

Y

Thirty-fourth Conference on Neural Information Processing Systems

OPTIMAL TRANSPORT

Distributions: ¢ € /A (X) and v€E M (Y)

Couplings: [y, v) := {7 s .t gy = p, oy = 1/}

Costfunction: ¢: X XY = R

Optimal coupling’

Definition of Optimal Transport

W.(u,v) = 1nt [c(x, y)dy(x, y)
SIOND UXY

1: Graph was taken from Computational Optimal Transport book, written by Gabriel Peyré and Marco Cuturi

How to compute the OT in practice ?

n m
Discrete Distributions: U = Z a 5x,- , V= Z bj 5yj
i=1 J=1
Discrete OT: ~ We(u.v) = 'min_ (P,C) where Vi,jC;j=c(x,y)
Pl1_=a,P'1,=b ‘
Main issues
» Costly to compute » LP: O(n’log(n)) complexity

* Not differentiable with respect to the measures

» Suffers from the curse of dimensionality

Entropic Regularization

Relative Entropy: KL(y||z) = J

d
log (d—y(x, y)) dy(x,y) + J (dr(x,y) — dy(x,y))
TXY 4 TXY

Definition of the Regularized OT W. (u,v) = inf J cCx, V)dy(x,y) + eKL(y| | 1 @ v)
’ yE€ll(p,v) UXY

Approximation of OT Im W, (u,v) = W.(u,v)
e—0

Advantages

* |t is differentiable with respect to the measures

e |t does not suffer from the curse of dimension

|t is faster to compute » Sinkhorn algorithm: @(nz) per iteration

Sinkhorn Algorithm

Discrete ROT: W, (1,1) = min (P,C) —eH(P) = eKL(P||K) where K =exp(—Cle)

P e R
Pl _=aP'1 =0

Until convergence, at each iteration compute : 1 < U <

Output: P¥ = Diag(u)KDiag(v)

A The Sinkhorn algorithm converges iff all the entries of K are positive

computing Klu and Kv requires @(nz) algebraic operations

—» (Cannot be applied for large scale problems

Positive Low-rank Factorization of the Kernel

 Random version to approximate the ROT for usual cost functions

» Constructive and differentiable method to learn an adapted kernel

Positive Random Features

Kernel of the form: k(x,y) = J o(x, u) p(y,u)dp(u) where Vx,ue XL X%, p(x,u) € (RY)?
ueU

1
Positive low-rank Factorization: ky(x,y) = (p,x), ps(y)) where @) =—= (p(x.up), ..., p(x u,)) € RH

dl2

Ix = yI13 4

Example: RBF Kernel e = (—) J exp (=27 lx — ull5) exp (=27 |y — ull5) du
e ucRd

Positive Low-rank Factorization of the Kernel

Approximation of ROT:

W, (i, v) = min eKL(P| | K,)

X
e R

Pl _=aP'1 =b

where Kg = 5T§ : 5 = [qag(xl), ...,goe(xn)] - (R:)rxn , Z_: — [¢Q(y1)v ’¢9(ym)] = (R;I—)er

Remarks:

 Computing KHTM and Kyv requires (O(nr) algebraic operations

« All the entries of K, are positive > the Sinkhorn algorithm converges

’ ch,e = Wc,e where c(x,y) = — elog(k(x, y))

lx — 112
Example: k(x,y) = e~ = and therefore c(x,y) = ||lx — y||?

Positive Low-rank Factorization of the Kernel

Theorem

Let where yr = sup | p(x, u) (v, u)/k(x, y) |, then with a probability 1 — 7, the Sinkhorn Algorithm with inputs Ky, a and

X, Y, U

y n
b output a o-approximation of the ROT distance in O (?HCH W’ log ()) algebraic operations.
£ T

Constructive Positive Features: Differentiability

Proposition
Let X =[x, ...,x] E R&™n (X)) = Z ao, ,U = Z b; O and (x,0) e RIX R — @y(x) € (R*)" a differentiable map.

17X,
=1

Denote ky(x,y) = (@y(x), py(y))- Then 6’ — WCQ,g(,u(X),v)and X — ch,g(//t(X), V) are differentiable.

—>» Learn an adapted kernel/cost function to compare two distributions via OT

Experiments

* Efficiency vs. Approximation trade-off using positive features

Regularization: 0.01 Regularization: 0.05 Regu Iarlzatlon 0.1

_110 | : 100.5 | 100.5 i 100.5 Regularization: 0.5
>~ A ROT: -0.058 . .
S I | |
> i i i
2 | | |
8 - - . -
5 : ! | | 1
R I | 100.0 frorfrr e e [([0B % Sem— | | 00,0 e i
5 - - e
e | |
e . .
S | ! l
© I |
2 e Y I [vy
@ e ROT:-0.787 | | e ROT:-1.738 | | e ROT: -9.590
1
90 100 101 102 99.5 0 10! 0 99.5 100 10! 102 99'510'-2 10- 100 0
Time (s) Time (s) Time (s) Time (s)

—— Nysr =100 —-— Nysr =50 Nys r = —-— Nys ------ Nys r = 2000 — Sink
—— RFr =100 —-— RF r =500 Fa y RF r = 2000

* Using positive features to learn adversarial kernels in GANs

