
Problem:	Are	two sets	of	observations	drawn from the	same
distribution?	
Contributions:
• We exhibit a	family of	𝐿<-based metrics which metrize the	
weak convergence.

• We	derive linear-time,	nonparametric,	a.s - consistent	𝑳𝟏-
based two sample tests.		

• We	show	𝐿Ggeometry provides better power	than its 𝐿H
counterpart.

• Wemaximize a	lower bound on	the	test	power	and	learn
distinguishing features between distributions.

Overview

Theorem: Let	k a	characteric and	bounded kernel.	For	all	
𝒑 ≥ 𝟏,

𝒅𝑳𝒑,𝝁 𝑷, 𝑸 ≔ T
𝒕
|𝝁𝑷(𝒕) − 𝝁𝑸(𝒕)|𝒑 𝒅𝜞(𝒕)

𝟏/𝒑

where 𝝁𝑷(t):=	∫𝒕 𝒌 𝒙, 𝒕 𝒅𝑷(𝒙) is	a	metric which metrize
the	weak convergence.
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Weak Convergence

Why ℓG ≫ ℓH ?

Comparing	distributions:	ℓ𝟏 geometry	improves	kernel	two-sample	testing Meyer	Scetbon,	Gaël Varoquaux
Inria,	Université Paris-Saclay

• Integral	operator:	𝑻𝒌𝝈: 𝒇 ∈ 𝑳𝟐
𝒅𝜞(ℝ𝒅) ⟶ ∫ℝ𝒅 𝒌 𝒙, . 𝒇 𝒙 𝒅𝜞

𝒇 ∈ 𝑻𝒌(𝑩s𝒅𝜞)
• IPM formulation:	𝒅𝑳𝒑,𝝁 𝑷, 𝑸 = 𝐬𝐮𝐩 {𝑬𝑷(𝒇 𝑿 ) − 𝑬𝑸(𝒇 𝒀 }

Sketch of proof: 

• Test:	𝐻}: 𝑷 = 𝑸 vs	 𝐻G: 𝑷 ≠ 𝑸 :
• Samples:	𝑿 ≔ 𝒙𝒊 𝒊�𝟏𝒏 ~ 𝑷 and	Y≔ 𝒚𝒊 𝒊�𝟏𝒏 ~ 𝑸
• Empirical ME:	𝝁𝑿(𝑻) ≔

𝟏
𝒏
∑𝒊�𝟏𝒏 𝒌𝝈(𝒙𝒊, 𝑻)

• 𝒌𝝈 the	Gaussian kernel of	width 𝝈
• Test	locations:	 𝑻𝒊 𝒊�𝟏

𝑱 ~ 𝜞
• Test	statistic:	

�𝒅ℓ𝒑,𝝁 𝑿, 𝒀
𝒑
≔ 𝒏

𝒑
𝟐�
𝒊�𝟏

𝑱

|𝝁𝑿(𝑻𝒊) − 𝝁𝒀 𝑻𝒊 |𝒑

Mean Embedding test
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Test	of	level 𝜶 :	Compute �𝒅ℓ𝒑,𝝁 𝑿, 𝒀
𝒑
and	reject 𝐻} if

�𝒅ℓ𝒑,𝝁 𝑿, 𝒀
𝒑
> 𝑻𝜶,𝒑 = 𝟏 − 𝜶 quantile	of	the	null distribution.

Proposition:		Let	𝜹 > 𝟎. Under	
the	null hypothesis 𝐻}, almost
surely there exists 𝑵 ≥ 𝟏 ,	such
that for	all	𝒏 ≥ 𝑵,	with a	
probability of 1- 𝛿:

�𝒅ℓ𝟐,𝝁 𝑿, 𝒀
𝟐
> 𝑻𝜶,𝟐 ⟹ �𝒅ℓ𝟏,𝝁 𝑿, 𝒀 > 𝑻𝜶,𝟏

Definition:	(Analytic kernel).	A	positive	definite kernel k	
is analytic if	for	all		𝒙 ∈ ℝ𝒅, the	feature map k(𝒙,	.)	is an	
analytic function on ℝ𝒅. 

Normalized Tests
Remark:	Under	𝐻},		�𝒅ℓ𝟏,𝝁 𝑿, 𝒀 converge	to	a	sum of	
correlated Nakagami variables.
Normalized Mean Embedding (ME)	Test:

L1-ME 𝑿, 𝒀 ≔ || 𝒏 𝜮𝒏
�𝟏𝟐𝑺𝒏||𝟏

• 𝑺𝒏 ≔
𝟏
𝒏
∑𝒊�𝟏𝒏 𝒁𝑿𝒊 − 𝒁𝒀𝒊

• 𝜮𝒏 ≔ �𝒄𝒐𝒗 𝒁𝑿 + �𝒄𝒐𝒗 𝒁𝒀
• 𝒁𝑿𝒊 ≔ (𝒌𝝈 𝒙𝒊, 𝑻𝟏 , … , 𝒌𝝈(𝒙𝒊, 𝑻𝑱))

Normalized Smooth Characteristic Function (SCF)	Test:

L1-SCF 𝑿, 𝒀 ≔ || 𝒏 𝜮𝒏
�𝟏𝟐𝑺𝒏||𝟏

• 𝒁𝑿𝒊 ≔ (𝒄𝒐𝒔 𝒙𝒊𝑻𝑻𝟏 𝒇 𝒙𝒊 , 𝒔𝒊𝒏 𝒙𝒊𝑻𝑻𝟏 𝒇 𝒙𝒊 , … , 𝐬𝐢𝐧(𝒙𝒊𝑻𝑻𝑱)𝒇(𝒙𝒊 ))
• 𝒇 is the	inverse	Fourier	transform of	𝒌𝝈.	

Proposition:	Under	𝐻},	L1-ME 𝑿, 𝒀 is a.s asymptotically
distributed as	a	sum of	J	i.i.d Nakagami variables	of	
parameter 𝒎 = 𝟏

𝟐
and	𝝕 = 𝟏

𝟐
.

Optimization Procedure

Proposition:	The	test	power	𝑷(L1−ME 𝑿, 𝒀 > 𝝐) of	the	
the	L1-ME	test	satisifes 𝑷(L1−ME 𝑿, 𝒀 > 𝝐) ≥ 𝑳 𝝀𝒏
where 𝑳(𝝀𝒏) is an	increasing function of	𝝀𝒏 and	goes to	1	
when n goes to	infinity.
• 𝝀𝒏 ≔ || 𝒏 𝜮

�𝟏𝟐𝑺||𝟏 is the	population	counterpart of	
L1−ME 𝑿, 𝒀 .		

Optimization	Procedure:
• Optimize 𝑻𝒊 𝒊�𝟏

𝑱 , 𝝈 = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑳 𝝀𝒏
• Estimation	of	𝝀𝒏 on	a	separate training	set.

Regularization:	To	obtain a	lower bound,	we consider the	
regularized statistic

L1-ME 𝑿, 𝒀 ≔ || 𝒏 (𝜮𝒏 + 𝜸𝒏)�𝟏/𝟐𝑺𝒏||𝟏
• 𝜸𝒏 ⟶ 𝟎

Contour	plot	of	L1−ME 𝑿, 𝒀 as	a	
function of	𝑇H with	𝐽 = 2 and	𝑇G¯ixed.

• P~𝑵 𝟎, 𝟎 , 𝑰𝟐
• Q~𝑵 𝟎, 𝟏 , 𝑰𝟐
• L1−ME 𝑿, 𝒀 detects	the	differences.

Informative Features

• L1-opt-ME,	L1-opt-SCF:	Proposed Methods
• L1-grid-ME,	L1-grid-SCF:	Random settings
• ME-full,	SCF-full:	Optimized ℓH-based methods
• MMD-quad,	MMD-lin:	Quadratic and	linear-time	MMD	tests

Test	Power:	Synthetic Problems
• Test	Power	vs.	Sample Size

• Test	Power	vs.	Dimension

Higgs Dataset
Higgs Dataset:	𝒅 = 𝟒,
J= 𝟑.	Plot	of	Type-II	error
for	ℓG and	ℓH based	test	.	

• Optimized tests outperform
their random versions.

• ℓ𝟏 norm provides better
power.

• Unit	Ball	of	𝑳s𝒅𝜞 ℝ𝒅 :	𝑩s𝒅𝜞 ≔ {𝒇: 𝐬𝐮𝐩 𝒇 𝒙 ≤ 𝟏 a.s}


