Meyer SCETBON*, Laurent MEUNIER*, Yaniv ROMANO

Overview

Problem: How to infer from data conditional dependencies between random variables?

Contributions:

- We design a simple and consistent kernel-based conditional independence test using a randomized version of the ℓ_{p} distance between analytic kernel mean embeddings.
- We characterize the conditional independence between random variables using this distance, derive a first oracle estimate of it and obtain its asymptotic null distribution.
- We then propose an approximation of the oracle statistic using regularized least-squares estimators and show that it has the same asymptotic distribution under some mild assumptions
- In order to obtain a simple null asymptotic distribution, we consider also a normalized version of our tractable test statistic and show that it converges towards a standard normal distribution under the null hypothesis
- Finally we show on various experiments that our tes outperforms other SoTA tests as it is the only one able to control the Type-I error and obtain high power.

Distance between MEs

Definition

Let k be a positive definite, continuous, bounded and analytic kernel on \mathbb{R}^{d}, P, Q two distributions on \mathbb{R}^{d}, denote respectively $\mu_{P, k}$ and $\mu_{Q, k}$ their mean embeddings and $p, J \geq 1$ two integers. Then we define.

$$
d_{p,(}(P, Q):=\left[\frac{1}{J} \sum_{j=1}\left|\mu_{P,(}\left(\mathbf{t}_{j}\right)-\mu_{Q,(}\left(\mathbf{t}_{j}\right)\right|^{p}\right]^{\frac{1}{p}}
$$

where $\left(\mathbf{t}_{j}\right)_{j=1}^{J}$ are sampled independently from any absolutely continuous Borel probability measure.
$\longrightarrow d_{p, 2}(\cdot, \cdot)$ is a random metric on the space of probability distributions

Characterization of the CI

- Let $d_{x}, d_{y}, d_{z} \geq 1, \mathscr{X}:=\mathbb{R}^{d_{x}}, \mathscr{Y}:=\mathbb{R}^{d_{y}}$, and $\mathscr{Z}:=\mathbb{R}^{d_{z}}$. Let (X, Z, Y) be a random vector on $\mathscr{X} \times \mathscr{Z} \times \mathscr{Y}$ with law $P_{X Z Y}$
- Denote $\ddot{X}:=(X, Z), \ddot{X}:=\mathscr{X} \times \mathscr{Z}$ and let us define for all mesurable $(A, B) \in \mathscr{B}(\ddot{\mathscr{X}}) \times \mathscr{B}(\mathscr{Y})$:

$$
P_{\ddot{X} \otimes Y \mid Z}(A \times B):=\mathbb{E}_{Z}\left[\mathbb{E}_{\ddot{X}}\left[\mathbf{1}_{A} \mid Z\right] \mathbb{E}_{Y}\left[\mathbf{1}_{B} \mid Z\right]\right] .
$$

Proposition: $d_{p, r}\left(P_{X Z Y}, P_{\ddot{X} \otimes Y \mid Z}\right)=0$ if and only if $X \perp Y \mid Z$ a.s.

A First Oracle Statistic

For all $\left(\mathbf{t}^{(1)}, t^{(2)}\right) \in \ddot{\mathscr{X}} \times \mathscr{Y}$, we define the witness function:

$$
\Delta\left(\mathbf{t}^{(1)}, t^{(2)}\right):=\mu_{P_{\ddot{x} \otimes y \mid z}, k_{\check{x}} \cdot k_{y}}\left(\mathbf{t}^{(1)}, t^{(2)}\right)-\mu_{P_{X Z Y}, k_{\check{x}} \cdot k_{y}}\left(\mathbf{t}^{(1)}, t^{(2)}\right)
$$

Reformulation of the witness function $\Delta\left(\mathbf{t}^{(1)}, t^{(2)}\right)$:
$\mathbb{E}\left[\left(k_{\ddot{x}}\left(\mathbf{t}^{(1)}, \ddot{X}\right)-\mathbb{E}_{\ddot{X}}\left[k_{\ddot{x}}\left(\mathbf{t}^{(1)}, \ddot{X}\right) \mid Z\right]\right)\left(k_{y}\left(t^{(2)}, Y\right)-\mathbb{E}_{Y}\left[k_{y}\left(t^{(2)}, Y\right) \mid Z\right]\right)\right]$ A First Estimate of the witness function denoted $\Delta_{n}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right)$:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(k_{\left.\ddot{x}\left(\mathbf{t}^{(1)}, \ddot{x}_{i}\right)-\mathbb{E}_{\ddot{X}}\left[k_{\ddot{x}}\left(\mathbf{t}^{(1)}, \ddot{X}\right) \mid z_{i}\right]\right)\left(k_{y}\left(t^{(2)}, y_{i}\right)-\mathbb{E}_{Y}\left[k_{y}\left(t^{(2)}, Y\right) \mid z_{i}\right]\right) .}\right.
$$

Definition of Our Oracle Statistic

$$
\mathrm{Cl}_{n, p}:=\sum_{j=1}^{J}\left|\Delta_{n}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right)\right|^{p}
$$

- Under $H_{0}, \sqrt{n} \mathrm{CI}_{n, p} \rightarrow\|X\|_{p}^{p}$ where $X \sim \mathcal{N}\left(0_{j}, \Sigma\right)$ and we have an analytic formulation of Σ.
- Under $H_{1}, \lim _{n \rightarrow \infty} P\left(n^{p / 2} \mathrm{CI}_{n, p} \geq q\right)=1$ for any $q \in \mathbb{R}$. Problems:
- The oracle statistic involves unknown conditional means
- The asymptotic distributions involved an unknown covariance

Approximation of the Oracle

We estimate these conditional means using Regularized Least-squares Estimators:

$$
\begin{aligned}
h_{j, r}^{(2)} & :=\min _{h \in H_{\dot{z}}^{2, j}} \frac{1}{r} \sum_{i=1}^{r}\left(h\left(z_{i}\right)-k_{g}\left(t_{j}^{(2)}, y_{i}\right)\right)^{2}+\lambda_{j, r}^{(2)}\|h\|_{H_{\ddot{x}}^{2, j}}^{2} \\
h_{j, r}^{(1)} & :=\min _{h \in H_{\neq}^{1, j}} \frac{1}{r} \sum_{i=1}^{r}\left(h\left(z_{i}\right)-k_{\ddot{x}}\left(\mathbf{t}_{j}^{(1)},\left(x_{i}, z_{i}\right)\right)\right)^{2}+\lambda_{j, r}^{(1)}\|h\|_{H_{\ddot{x}}^{1, j}}^{2}
\end{aligned}
$$

> Approximate Estimate of the Witness Function

$$
\widetilde{\Delta}_{n, r}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right):=\frac{1}{n} \sum^{n}\left(\quad\left(\mathbf{t}_{j}^{(1)}, \ddot{x}_{i}\right)-h_{j, r}^{(1)}\left(z_{i}\right)\right) \times\left(\left(t_{j}^{(2)}, y_{i}\right)-h_{j, r}^{(2)}\left(z_{i}\right)\right)
$$

Definition of our Approximate Statistic

$$
\widetilde{\mathrm{CI}}_{n, r, p}:=\sum_{j=1}^{J}\left|\widetilde{\Delta}_{n, r}\left(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}\right)\right|^{p}
$$

We show the same asymptotic behavior as the one obtained for the Oracle statistic

Normalized Version

Denote $\tilde{u}_{i, r}(j):=\left(k_{\ddot{x}}\left(\mathbf{t}_{j}^{(1)}, \ddot{x}_{i}\right)-h_{j, r}^{(1)}\left(z_{i}\right)\right)\left(k_{y}\left(t_{j}^{(2)}, y_{i}\right)-h_{j, r}^{(2)}\left(z_{i}\right)\right)$, $\widetilde{\mathbf{S}}_{n, r}:=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i, r} \quad$ and $\quad \mathbf{\Sigma}_{n, r}:=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i, r} \widetilde{\mathbf{u}}_{i, r}^{T}$

$$
\widetilde{\mathrm{NCI}}_{n, r, p}:=\left\|\Sigma_{n, r}^{-1 / 2} \widetilde{\mathbf{S}}_{n, r}\right\|_{p}^{p}
$$

Results:

- Under $H_{0}, \sqrt{n} \widetilde{\mathrm{NCI}}_{n, r_{n} p} \rightarrow\|X\|_{p}^{p}$ where $X \sim \mathcal{N}\left(0_{j}, \mathrm{Id}_{j}\right)$
- Under $H_{1}, \lim _{n \rightarrow \infty} P\left(n^{p / 2} \widetilde{\mathrm{NCI}}_{n, r_{n}, p} \geq q\right)=1$ for any $q \in \mathbb{R}$.

- Ours
\cdots FCIT

