FACEBOOK AI

An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

Overview

Problem: How to infer from data conditional dependencies between random variables?

Contributions:

- We design a simple and consistent kernel-based conditional independence test using a randomized version of the ℓ_p distance between analytic kernel mean embeddings.
- We characterize the conditional independence between random variables using this distance, derive a first oracle estimate of it and obtain its asymptotic null distribution.
- We then propose an approximation of the oracle statistic using regularized least-squares estimators and show that it has the same asymptotic distribution under some mild assumptions.
- In order to obtain a simple null asymptotic distribution, we consider also a normalized version of our tractable test statistic and show that it converges towards a standard normal distribution under the null hypothesis.
- Finally we show on various experiments that our test outperforms other SoTA tests as it is the only one able to control the Type-I error and obtain high power.

ℓ_n Distance between MEs

Definition

Let k be a positive definite, continuous, bounded and **analytic** kernel on \mathbb{R}^d , P, Q two distributions on \mathbb{R}^d , denote respectively $\mu_{P,k}$ and $\mu_{O,k}$ their *mean embeddings* and $p, J \ge 1$ two integers. Then we define:

$$d_{p,J}(\boldsymbol{P},\boldsymbol{Q}) := \left[\frac{1}{J} \sum_{j=1}^{J} |\mu_{\boldsymbol{P},\boldsymbol{k}}(\mathbf{t}_j) - \mu_{\boldsymbol{Q},\boldsymbol{k}}(\mathbf{t}_j)|^p \right]$$

where $(\mathbf{t}_{j})_{j=1}^{\prime}$ are sampled independently from any absolutely continuous Borel probability measure.

 $d_{p,J}(\cdot, \cdot)$ is a random metric on the space of probability distributions.

Meyer SCETBON*, Laurent MEUNIER*, Yaniv ROMANO

Definition of Our Oracle Statistic

$$\mathsf{Cl}_{n,p} := \sum_{j=1}^{J} \left| \Delta_n(\mathbf{t}_j^{(1)}, t_j^{(2)}) \right|^p$$

• Under $H_0, \sqrt{n} \operatorname{CI}_{n,p} \to ||X||_p^p$ where $X \sim \mathcal{N}(0_J, \Sigma)$ and we have an analytic formulation of Σ .

• Under H_1 , lim $P(n^{p/2}CI_{n,p} \ge q) = 1$ for any $q \in \mathbb{R}$. Problems:

• The oracle statistic involves unknown conditional means

• The asymptotic distributions involved an unknown covariance

Dauphine | PSL

Approximation of the Oracle

We estimate these conditional means using *Regularized* Least-squares Estimators:

$$\begin{split} h_{j,r}^{(2)} &:= \min_{h \in H_{\mathscr{Z}}^{2,j}} \frac{1}{r} \sum_{i=1}^{r} \left(h(z_{i}) - k_{\mathscr{Y}}(t_{j}^{(2)}, y_{i}) \right)^{2} + \lambda_{j,r}^{(2)} \|h\|_{H_{\mathscr{Z}}^{2,j}}^{2} \\ h_{j,r}^{(1)} &:= \min_{h \in H_{\mathscr{Z}}^{1,j}} \frac{1}{r} \sum_{i=1}^{r} \left(h(z_{i}) - k_{\mathscr{X}}(\mathbf{t}_{j}^{(1)}, (x_{i}, z_{i})) \right)^{2} + \lambda_{j,r}^{(1)} \|h\|_{H_{\mathscr{Z}}^{1,j}}^{2} \end{split}$$

Approximate Estimate of the Witness Function

$$\widetilde{\Delta}_{n,r}(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}) := \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{k}_{\mathcal{T}}(\mathbf{t}_{j}^{(1)}, \ddot{x}_{i}) - \mathbf{h}_{j,r}^{(1)}(z_{i}) \right) \times \left(\mathbf{k}_{\mathcal{T}}(t_{j}^{(2)}, y_{i}) - \mathbf{h}_{j,r}^{(2)}(z_{i}) \right)$$

Definition of our Approximate Statistic

$$\widetilde{\mathrm{CI}}_{n,\mathbf{r},\mathbf{p}} := \sum_{j=1}^{\mathbf{J}} \left| \widetilde{\Delta}_{n,\mathbf{r}}(\mathbf{t}_{j}^{(1)}, t_{j}^{(2)}) \right|^{p}$$

We show the same asymptotic behavior as the one obtained for the Oracle statistic.

Normalized Version

enote
$$\widetilde{u}_{i,r}(j) := (k_{\mathcal{X}}(\mathbf{t}_{j}^{(1)}, \tilde{x}_{i}) - h_{j,r}^{(1)}(z_{i}))(k_{\mathcal{Y}}(t_{j}^{(2)}, y_{i}) - h_{j,r}^{(2)}(z_{i})),$$

 $:= \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i,r} \text{ and } \sum_{n,r} := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{u}}_{i,r} \widetilde{\mathbf{u}}_{i,r}^{T}$
 $\widetilde{\mathrm{NCI}}_{n,r,p} := \|\Sigma_{n,r}^{-1/2} \widetilde{\mathbf{S}}_{n,r}\|_{p}^{p}.$
ults:
Under $H_{0}, \sqrt{n} \widetilde{\mathrm{NCI}}_{n,r_{n},p} \to \|X\|_{p}^{p}$ where $X \sim \mathcal{N}(0_{J}, \mathrm{Id}_{J})$
Under $H_{1}, \lim_{n \to \infty} P(n^{p/2} \widetilde{\mathrm{NCI}}_{n,r_{n},p} \ge q) = 1$ for any $q \in \mathbb{R}.$

