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Definition

where  are sampled independently from any absolutely 
continuous Borel probability measure.  
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𝒞1(a, b, r) := {(Q, R, g) ∈ ℝn×r
+ × ℝm×r

+ × (ℝ*+)r s.t. Q1r = a, R1r = b}
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+ × ℝm×r
+ × (ℝ+)r s.t. QT1n = RT1m = g}
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Contributions:

Problem: How to infer from data conditional dependencies 
between random variables?

• We design a simple and consistent kernel-based conditional 
independence test using a randomized version of the  
distance between analytic kernel mean embeddings.

• We characterize the conditional independence between 
random variables using this distance, derive a first oracle 
estimate of it and obtain its asymptotic null distribution.


• We then propose an approximation of the oracle statistic using 
regularized least-squares estimators and show that it has the 
same asymptotic distribution under some mild assumptions.


• In order to obtain a simple null asymptotic distribution, we 
consider also a normalized version of our tractable test 
statistic and show that it converges towards a standard normal 
distribution under the null hypothesis.


• Finally we show on various experiments that our test 
outperforms other SoTA tests as it is the only one able to 
control the Type-I error and obtain high power.

ℓp

Overview Characterization of the CI Approximation of the Oracle

Let  be a positive definite, continuous, bounded and analytic 
kernel on  ,  two distributions on , denote 
respectively  and  their mean embeddings and  
two integers. Then we define:

k
ℝd P, Q ℝd

μP,k μQ,k p, J ≥ 1

 is a random metric on the space of 
probability distributions.

dp,J( ⋅ , ⋅ )

•  Let , . Let 
 be a random vector on with law 

dx, dy, dz ≥ 1 𝒳 := ℝdx, 𝒴 := ℝdy, and 𝒵 := ℝdz

(X, Z, Y ) 𝒳 × 𝒵 × 𝒴 PXZY

• Denote ,  and let us define for all 
mesurable : 

··X := (X, Z) ··𝒳 := 𝒳 × 𝒵
(A, B) ∈ ℬ( ··𝒳) × ℬ(𝒴)

.P ··X⊗Y|Z(A × B) := 𝔼Z [𝔼 ··X[1A |Z]𝔼Y[1B |Z]]

Proposition:  if and only if  a.s.dp,J(PXZY, P ··X⊗Y|Z) = 0 X ⊥ Y |Z

For all , we define the witness function:(t(1), t(2)) ∈ ··𝒳 × 𝒴

Δ(t(1), t(2)) := μP ··X⊗Y|Z,k ··𝒳⋅k𝒴
(t(1), t(2)) − μPXZY,k ··𝒳⋅k𝒴

(t(1), t(2))

Reformulation of the witness function :Δ(t(1), t(2))

𝔼 [(k ··𝒳(t(1), ··X) − 𝔼 ··X [k ··𝒳(t(1), ··X) |Z]) (k𝒴(t(2), Y ) − 𝔼Y [k𝒴(t(2), Y ) |Z])]
A First Estimate of the witness function denoted :Δn(t(1)

j , t(2)
j )

1
n

n

∑
i=1

(k ··𝒳(t(1), ··xi) − 𝔼 ··X [k ··𝒳(t(1), ··X) |zi]) (k𝒴(t(2), yi) − 𝔼Y [k𝒴(t(2), Y ) |zi])
Definition of Our Oracle Statistic

CIn,p :=
J

∑
j=1

Δn(t(1)
j , t(2)

j )
p

• Under ,   where  and we 
have an analytic formulation of .

H0 nCIn,p → ∥X∥p
p X ∼ 𝒩(0J, Σ)

Σ

• Under ,  for any .H1 lim
n→∞

P(np/2CIn,p ≥ q) = 1 q ∈ ℝ
Problems:
• The oracle statistic involves unknown conditional means 

• The asymptotic distributions involved an unknown covariance

We estimate these conditional means using Regularized 
Least-squares Estimators: 
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Approximate Estimate of the Witness Function 

Δ̃ n,r(t(1)
j , t(2)

j ) :=
1
n

n

∑
i=1

(k ··𝒳(t(1)
j , ··xi)−h(1)

j,r (zi)) × (k𝒴(t(2)
j , yi)−h(2)

j,r (zi))
Definition of our Approximate Statistic 

C̃In,r,p :=
J

∑
j=1

Δ̃ n,r(t(1)
j , t(2)

j )
p

We show the same asymptotic behavior as the one obtained 
for the Oracle statistic.

Normalized Version
Denote ,  ũi,r( j) := (k ··𝒳(t(1)

j , ··xi)−h(1)
j,r (zi))(k𝒴(t(2)

j , yi)−h(2)
j,r (zi))
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1
n

n

∑
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ũi,r and Σn,r :=
1
n

n

∑
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ũi,rũT
i,r

ÑCI n,r,p := ∥Σ−1/2
n,r S̃n,r∥p

p.
Results:

• Under ,   where H0 n ÑCI n,rn,p → ∥X∥p
p X ∼ 𝒩(0J, IdJ)

• Under ,  for any .H1 lim
n→∞

P(np/2 ÑCI n,rn,p ≥ q) = 1 q ∈ ℝ


