Overview

Problem: How to obtain an efficient procedure to compute an approximation of the Gromov Wasserstein cost?

Contributions:

- We show first that a low-rank factorization (or approximation) of the two input cost matrices that define GW, one for each measure, can be exploited to lower the complexity of the entropic GW problem from cubic to quadratic.
- We show next, independently, that by imposing a lownonnegative rank on the couplings involved in the GW problem we obtain a solver only requiring $\mathcal{O}\left(n^{2}\right)$ operations with no prior assumption on input cost matrices.
- Finally, we show that both low-rank assumptions (on costs and couplings) can be combined to shave yet another factor and reach a linear $\mathcal{O}(n)$ GW approximation.
- We show experimentally the efficiency of our approach.

Entropic Gromov Wasserstein

Discrete Distributions: $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$ Cost matrices: $A=\left[d_{x}\left(x_{i}, x_{j}\right)\right]_{1 \leq i, j \leq n}, \quad B=\left[d_{y}\left(y_{i}, y_{j}\right)\right]_{1 \leq i, j \leq m}$

Definition of Entropic Gromov Wasserstein:

Low-rank Costs

Idea: Replace A by $\tilde{A}=A_{1} A_{2}^{T}$ where $\left(A_{1}, A_{2}\right) \in\left(\mathbb{R}_{*}^{+}\right)^{n \times d} \times\left(\mathbb{R}_{*}^{+}\right)^{n \times d}$ Replace B by $\tilde{B}=B_{1} B_{2}^{T}$ where $\left(B_{1}, B_{2}\right) \in\left(\mathbb{R}_{*}^{+}\right)^{n \times d^{\prime}} \times\left(\mathbb{R}_{*}^{+}\right)^{n \times d}$ Updating the cost $C=-4 A_{1} A_{2}^{T} P B_{1} B_{2}^{T}$ requires now

Examples: $\quad n m\left(d+d^{\prime}\right)+d d^{\prime}(n+m)$ operations.

- SE distance: $A=\left[\left\|x_{i}-x_{j}\right\|_{2}^{2}\right]_{i, j}=A_{1} A_{2}^{T}$ with $z=\left(X^{\odot 2}\right)^{T} \mathbf{1}_{d}$ $A_{1}=\left[z, \mathbf{1}_{n},-2 X^{T}\right] \in \mathbb{R}^{n \times(d+2)}, \quad A_{2}=\left[\mathbf{1}_{n}, z, X^{T}\right] \in \mathbb{R}^{n \times(d+2)}$ computable in $\mathcal{O}(n)$
- General Distance Matrix: $\left\|A-\stackrel{A_{1}^{\downarrow}}{1} A_{2}^{T}\right\|_{F}^{2} \leq\left\|A-C_{d}\right\|_{F}^{2}+\gamma\|A\|_{F}^{2}$

Low-Rank Couplings
NN-rank: $\mathrm{rk}_{+}(M):=\min \left\{q \mid M=\sum_{i=1}^{q} R_{i}, \forall i, \operatorname{rk}\left(R_{i}\right)=1, R_{i} \geq 0\right\}$ Low-NN rank couplings:
$\Pi_{a, b}(r):=\left\{P \in \mathbb{R}_{+}^{n \times m}\right.$ s.t. $P \mathbf{1}_{m}=a, P^{T} \mathbf{1}_{n}=b$ and $\left.\mathrm{rk}_{+}(P) \leq r\right\}$ Definition of Low-Rank Gromov Wasserstein:

$$
\operatorname{GW-LR}_{r}((a, A),(b, B)):=\min _{P \in \Pi_{a, b}(r)} \mathscr{E}_{A, B}(P)
$$

Entropic GW

Low-Rank GW
Reparametrization of GW-LR:

$$
\operatorname{GW-LR}_{r}((a, A),(b, B))=\min _{(Q, R, g) \in \mathscr{C}_{1}(a, b, r) \cap \mathscr{C}_{2}(r)} \mathscr{E}_{A, B}\left(Q \operatorname{Diag}(1 / g) R^{T}\right)
$$

$$
\mathscr{C}_{1}(a, b, r):=\left\{(Q, R, g) \in \mathbb{R}_{+}^{n \times r} \times \mathbb{R}_{+}^{m \times r} \times\left(\mathbb{R}_{+}^{*}\right)^{r} \text { s.t. } Q \mathbf{1}_{r}=a, R \mathbf{1}_{r}=b\right\}
$$

$$
\mathscr{C}_{2}(r):=\left\{(Q, R, g) \in \mathbb{R}_{+}^{n \times r} \times \mathbb{R}_{+}^{m \times r} \times\left(\mathbb{R}_{+}\right)^{r} \text { s.t. } Q^{T} \mathbf{1}_{n}=R^{T} \mathbf{1}_{m}=g\right\}
$$

Mirror-Descent Scheme

Algorithm 2: Low-Rank GW
${ }_{1}$ Inputs: a, A, B, b, r, Q, R, g
2 for $t=1, \ldots$ do
$\left.\begin{array}{l|l}\mathbf{3} & \begin{array}{l}C_{1} \leftarrow-A Q \operatorname{diag}(1 / g) \\ { }_{4}\end{array} \\ C_{2} \leftarrow R^{T} B\end{array}\right\}$ Update the costs: $\left(n^{2}+m^{2}\right) r$ $C_{2} \leftarrow R^{T} B$
$K^{(1)} \leftarrow Q \odot \exp \left(4 \gamma C_{1} C_{2} R \operatorname{diag}(1 / g)\right)$
$K^{(2)} \leftarrow R \odot \exp \left(4 \gamma\left(C_{1} C_{2}\right)^{T} Q \operatorname{diag}(1 / g)\right)$
Update the kernels $\omega \leftarrow \mathcal{D}\left(Q^{T} C_{1} C_{2} R\right)$ $\mathcal{O}\left((n+m) r^{2}\right)$
$K^{(3)} \leftarrow g \odot \exp \left(-4 \gamma \omega / g^{2}\right)$
$Q, R, g \leftarrow \underset{\zeta \in \mathcal{C}(2)}{\operatorname{argmin}} \mathrm{KL}(\boldsymbol{\zeta}, \mathrm{K})$ Solve the convex Barycenter
${ }_{10}$ end problem with Dykstra:
${ }_{11}$ Return: \mathcal{E}

Double Low-Rank GW

The only steps which remain quadratic are the updates of the costs C_{1} and C_{2}.
\longrightarrow By replacing A by $\tilde{A}=A_{1} A_{2}^{T}$ and B by $\tilde{B}=B_{1} B_{2}^{T}$:

Experiments

Comparison of the time-accuracy tradeoff between our method and the Entropic GW. We plot $n=5000$ samples from two isotropic Gaussian Blobs in 10 and 15-D. We observe that our method obtains similar GW loss, while being orders of magnitude faster.

