
Entropic Gromov Wasserstein
Discrete Distributions:  and μ =

n

∑
i=1

ai δxi
ν =

m

∑
j=1

bj δyj

Cost matrices:  A = [d𝒳(xi, xj)]1≤i,j≤n, B = [d𝒴(yi, yj)]1≤i,j≤m

Definition of Entropic Gromov Wasserstein:

GWε((a, A), (b, B)) := min
P ∈ ℝn×m

+

P1m = a, PT1n = b

ℰA,B(P) − εH(P)

P = arg min
P ≥ 0, P1m = a, PT1n = b

KL(P, K)

Mirror Descent Scheme:

for t = 0,…, T :
Init: a, A, b, B, ε, P

Shannon entropy

ℰA,B(P) := ∑
i,j,i′￼,j′￼

|Ai,i′￼− Bj,j′￼|
2 Pi,jPi′￼,j′￼

 where

K = exp(−C/ε)
C = − 4APB Update the cost: 𝒪(nm(n + m))

Update the kernel: 𝒪(nm)

Solve the entropic OT: 𝒪(nm)

Low-Rank Couplings

NN-rank:  rk+(M) := min {q |M =
q

∑
i=1

Ri, ∀i, rk(Ri) = 1,Ri ≥ 0}

Definition of Low-Rank Gromov Wasserstein:

GW-LRr((a, A), (b, B)) := min
P∈Πa,b(r)

ℰA,B(P)

Low-NN rank couplings:

Πa,b(r) := {P ∈ ℝn×m
+ s . t . P1m = a, PT1n = b and rk+(P) ≤ r}

𝒞1(a, b, r) := {(Q, R, g) ∈ ℝn×r
+ × ℝm×r

+ × (ℝ*+)r s.t. Q1r = a, R1r = b}
𝒞2(r) := {(Q, R, g) ∈ ℝn×r

+ × ℝm×r
+ × (ℝ+)r s.t. QT1n = RT1m = g}

GW-LRr((a, A), (b, B)) = min
(Q,R,g)∈𝒞1(a,b,r)∩𝒞2(r)

ℰA,B(QDiag(1/g)RT)

Reparametrization of GW-LR:

Low-Rank GWEntropic GW
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Contributions:

Problem: How to obtain an efficient procedure to compute an 
approximation of the Gromov Wasserstein cost?

• We show first that a low-rank factorization (or approximation) 
of the two input cost matrices that define GW, one for each 
measure, can be exploited to lower the complexity of the 
entropic GW problem from cubic to quadratic.


• We show next, independently, that by imposing a low-
nonnegative rank on the couplings  involved in the GW 
problem we obtain a solver only requiring  operations 
with no prior assumption on input cost matrices.


• Finally, we show that both low-rank assumptions (on costs 
and couplings) can be combined to shave yet another factor 
and reach a linear  GW approximation.

• We show experimentally the efficiency of our approach.


𝒪(n2)

𝒪(n)

Overview Low-rank Costs
 where (A1, A2) ∈ (ℝ+

* )n×d × (ℝ+
* )n×dReplace  by  A Ã = A1AT

2

Updating the cost  requires now 
 operations.

C = − 4A1AT
2 PB1BT

2
nm(d + d′￼) + dd′￼(n + m)

Idea:

 where (B1, B2) ∈ (ℝ+
* )n×d′￼× (ℝ+

* )n×d′￼Replace  by  B B̃ = B1BT
2

Examples:
A = [∥xi − xj∥2

2]i,j
= A1AT

2• SE distance:

 ,     A1 = [z, 1n, − 2XT] ∈ ℝn×(d+2) A2 = [1n, z, XT] ∈ ℝn×(d+2)

• General Distance Matrix: ∥A−A1AT
2 ∥2

F ≤ ∥A−Cd∥2
F + γ∥A∥2

F

computable in  𝒪(n)

Mirror-Descent Scheme

𝒪((n + m)r)

Double  Low-Rank GW
The only steps which remain quadratic are the updates 
of the costs  and .C1 C2
By replacing  by   and   by : A Ã = A1AT

2 B B̃ = B1BT
2

C1 = − A1AT
2 QDiag(1/g) C2 = − RTB2BT

1 and

𝒪(nrd + mrd′￼)

Experiments

Comparison of the time-accuracy tradeoff between our method 
and the Entropic GW. We plot  samples from two 
isotropic Gaussian Blobs in 10 and 15-D. We observe that our 
method obtains similar GW loss, while being orders of magnitude 
faster.

n = 5000

Solve the convex Barycenter 

problem with Dykstra: 

z = (X⊙2)T1dwith ,

}

}Update the kernels:

 𝒪((n + m)r2)

Update the costs: (n2 + m2)r


