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Overview

Problem: How to obtain an efficient procedure to compute an
approximation of the Gromov Wasserstein cost?

Contributions:

e We show first that a low-rank factorization (or approximation)
of the two input cost matrices that define GW, one for each
measure, can be exploited to lower the complexity of the
entropic GW problem from cubic to quadratic.

e We show next, independently, that by imposing a low-
nonnegative rank on the couplings ivolved in the GW
problem we obtain a solver only requiring ©(7°) operations
with no prior assumption on input cost matrices.

e Finally, we show that both low-rank assumptions (on costs
and couplings) can be combined to shave yet another factor
and reach a linear O(n) GW approximation.

e We show cxperimentally the efficiency of our approach.

Entropic Gromov Wasserstein

n m
Discrete Distributions: 1 = Z a; 0, and v = Z b; 5yj
i=1 j=1
Cost matrices: A = [do(x;, X)]1<; j<py B = ldoy(Vi )1 <i j<m

Definition of Entropic Gromov Wasserstein:

GW_.((a,A),(b,B)) := &, p(P) — eH(P)

min
X
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where &, z(P) :=

Mirror Descent Scheme:
Init: a, A, b, B, e, P
fort=0,...,T:

(C =—4APB < Update the cost: O(nm(n + m))

K =exp(—=C/e) Update the kernel: O(7m)
P = a}"g KL(Pa K) ‘

Solve the entropic OT: O(nm)

Shannon entropy

min
P>0,P1, =aP'1 =b
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Idea: Replace A by A = A|A] where (A4, Ay) € (R)™ x (R)™
Replace B by B — BleT where (B19B2) c (R:Ik-)nXd' X (R:Ik—)nxd’

— Updating the cost €' = — 4A1A2T PBleT requires now

nm(d + d') + dd'(n + m) operations.

= AA) with z= (X®H1, ,

L z

A =[z1,-2X"Te R A, =[1,,z,X"] € R+

computable in O(7)

Examples:
e SE distance: A = [||x; — XJH%]

e General Distance Matrix: ||A—A1A2T||% < ||A—Cd||12: + V”A”;zv

Low-Rank Couplings

q
NN-rank: rk (M) := min {q M = Z R, Vi, 7k(R;) = I,R, > O}

Low-NN rank couplings: =

I, ,(r) = {P e R™ g . t. P1,=a, P'1,=b and rk (P) < r}

Definition of Low-Rank Gromov Wasserstein:

GW-LR,((a,A),(b,B)) :== min &, z(P)

Pell, ,(r)
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Entropic GW

Low-Rank GW

Reparametrization of GW-LR:
GW-LR,((a,A), (b, B)) = min &, p(QDiag(1/ 2)RT)

(O,R,8)EE (a,b,r)NEG (1)

€\(a,b,r) ;= {(Q,R, g) € R X R x (R*)"s.t. Q1, = a,R1, = b}
G(r) = {(Q,R, g) € R X RT™ x (R,) s.t. 0"1,=R"1,, = g}

Chr

Mirror-Descent Scheme

Algorithm 2: Low-Rank GW

1 Inputs: a, A, B,b,7,Q, R, g
2 fort=1,... do
z g; : ;2;1;2 diag(1/9) } Update the costs: (1n” + m?)r
5 | K'Y+ Qo exp(d4yC,CyRdiag(1/g))
6 | K2 < ROexp(4y(C,C,)TQdiag(1/g)) Update the kergels:
+ | w« DQTCLCLR) O+ m)r7)
8 | K¢ g®exp(—4yw/g?)
o | QR,g«+  argmin KIL(¢, K) Solve the convex Barycenter
celabnntz() problem with Dykstra:
10 end
O((n + m)r)

11 Return: &

Double Low-Rank GW

The only steps which remain quadratic are the updates
of the costs € and C,.

—> By replacing A by A = A1A2T and Bby B = BleT :
C,=—A,A,ODiag(l/g) and C, = - R'B,B/
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Comparison of the time-accuracy tradeoff between our method
and the Entropic GW. We plot n = 5000 samples from two
1sotropic Gaussian Blobs in 10 and 15-D. We observe that our
method obtains similar GW loss, while being orders of magnitude
faster.



