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Why Causality? From DAGs to Causal Order

Learning Fixed-Point SCMs

Generative Modeling ortos o " . A DAG (always) induces Recovering Causal Orders from Observations Learning SCMs on the Ordered Variables
X
Easily N3 a causal order Goal: Infer in a zero-shot manner the causal Goal: Learn the fixed-point SCM associated to a single dataset
sampleable ‘\\ ’ — Ex:m = (X1, Xy, X2) order of variables from observations i given the causal order
‘ Dataset Generative Process Proposed Architecture
. . es No DAG
Equivalent Parameterization of SCMs , e P.i ner noi istribution on R4 e Causal Fmbedding: £: X € R4 - [X; x0,..X;%x04] € RAXD
required v 1s a generated noise distribution o g
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Goal: Learn a function H that maps Py to Py Noise Distribution: Py | G is a generated DAG . DAG Attention: DA(Q, K) = exp((QIZKTﬁND)’ where M = [0 7o 100
Examples: VAEs, GANs, Normalizing Flows, Diffusions, ... » Topological Ordering: Fixed-Point SCM: + His a generated sequence of d functions H;: R? — R J(exp( 75 >1d) 0| 0 |+
. ] ] X = PTH(P,X,P_N) ] o and [I(v)]; = v; ifv; = 1, and [J(v)]; = 1 otherwise
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Question: what if P admits an (unknown) structure? Map: H:(x,n) € R* Xx R* - R%s.t. DeER is obtained by sampling m i.i.d samples N Py
and then by solving for each k: Xl.(k) = H; (PAG (Xi(k)) , Ngk)) , Vi € [|d]] » Causal Encoder C;:h,,1 = h(DA(h,, X)X + h,) € R%*P
Permutation matrix
i i H = = . . : .
Causal Generative Modeling Jac, Jac, H Associated to T Training: Given (D;,G,), ..., (D,,, G,,) i.i.d, we  Algorithm 1 &-TOE(M, (D, Gu)) . Causal Decoder: F: X € R™® > [(X,, w;) (X, )] € R4
X = (X0, Xo, X X.] ~ P train a model M that predicts the leaves of ) Eﬁmﬁ %E ‘{2) - 1, W1) ey (&g, Wg
= A2, 43, AT TX the graphs in a sequential manner. 3 forq—1toddo - d A conticf: :
Partial Identifiability of Fixed-Point SCMs Irap 1 4: Opi M?Du),o y < L(Gy) Model: 7 X.E R _>.T ° CL(E(X)) € R” satisties the simple
— T Loss: M is learned by minimizing d-TOE > E'TOE - d'T[OF +B£N(p B(y) B structure of fixed-point SCM.
X - X, Probl St Identifiability): Gi d Py , ecove ' . AN s AN .
: X2 A e (X u::i) e:ln ( rong ) eress I,PV) HVen T ana Fx , can we recover where at each step we remove a leaf. 7 D = Ra(Dusb), G = Ra(Girs4) Training: minimize the MSE Ez.p, , ||7(Z) — Z||* where Pp_x
- quely the fixed-point SCIM" 8: end for -
9: Return d-TOE is the causally ordered distribution of observations.
Theorem (Monotonic Model)
Goal: Learn a function H that maps Py to Py and that satisfies the -to- i i :
unknown structure of Py PS N X If H is m.onotoni.c increasing w.r.t Fhe noisg, and Py is fixed, then End-to-End Pipeline Leaf Predicted at
there exists a unique SCM generating Py with order m and noise Py (1) (m) ;; / step g
Advantage: we can now simulate the effects of changes on the Probllemeet I;)P: I-c')et X+ v X 1 1.1.d Leaf ,?
variables X; w.r.t the structured generative process H samples trom Fy. OQur goal is to learn an : : ; Predicted Causal A
y g P Problem (Weal Identifiability): Given 7 and Py , can we recover SCM generating Py. D Predictor M Order - TT
Causality offers a reliable tool for decision- uniquely the interventional and counterfactual distributions? Training: We learn the SCM by training T 4 Remove the ‘
making in generative modeling Theorem (Invertible Model) on D ordered according to the causal order predicted leaf Loss to
' backpropagate
+ If H is invertible and C!, then the interventional and predicted by M on D. cxpropag
counterfactual distributions are uniquely identifiable. Inference: Once trained, we show that under /
ANM, and correctness of ##, T learned : . — 2
« Also, one can choose arbitrarily the noise distribution Py, converges (in the limit of infinite sample) to SCM Predicted i D i H D\ —D H

e.g. standard Gaussian.

the true SCM generating the data. Learner T Dataset

Parameterization of SCMs

* Noise distribution: Py Ny N, s o .
| | N Empirical Evaluations
* Directed Acyclic Graph: ¢ X, X,
* System of Equations: « We train M on =~ 200k datasets with n = 200 samples and d = 50 dimensions. Benchmarking of End-to-End Pipeline
X3
X; = H;(PA;(X;),N;), Vi€ [|d : : : C . :
l (PG (X), No) lall * We evaluate the models on =~ 400 test datasets of various sizes, newly sampled from either the distribution DATASETS LIN OUT RFF OUT
used during training (in-distribution), or from a variant with a substantial shift (out-of-distribution). DATASETS LIN OUT RFF OUT DECI 0.39 (0.29) 0.18 (0.12)
Generate observations Generate effects of changes DOWHY - AVICI 0.20 (0.18) 0.16 (0.096)
: : PC 0.47.(0.14)  0.40 (0.12) [FIP (OURS) 0.13 (0.10) _ 0.13 (0.096)
« Sample (N;, N,, N3) ~ Py  Interveneoni:X; < a Evaluation of the Leaf Predictor M Evaluation of the SCM Learner 7 GES 0.56 (0.12) 0.37 (0.060) : : : :
: : FIP w. G 0.034 (0.048) 0.042 (0.040)
. R NN « Generate observations with the GOLEM 0.73 (0.29) 0.31 (0.13)
Solve X; = H;(PA;(X;),N;) intervened system 1.0 @ _o— - —o- = DATASETS TRUE P TRUE G DEC]I 0.36 (0.13) 0.74 (0.14) DOWHY W. G 0.0017 (0.0017) 0.088 (0.072)
e . - - . GRAN-DAG  0.29 (0.19)  0.50 (0.26) . o
Bl ~.Z. :
Learning SCMs from observations is hard o 99 !'\\ - LININ 0.037 70.066 (0.057) 0.012/0.039 (0.060) DAG-GNN 0.61 (0.19) 0.44 (0.15) Corpparlso.n of the co.unterfactual predictions
~. LINOUT  0.065/0.11 (0.084) 0.017/0.034 (0.048) against various baselines on O.0.D datasets.
O ~. DP-DAG 0.17(0.074) 0.16(0.067)
. . — R RFF IN 0.065/70.10 (0.089) 0.033/0.059 (0.075)
- Computationally Challenging o8 E=m—_ < RFEOUT  0.11/0.12 (0.088)  0.033 /0.042 (0.040) AVICI 0.73(0.16)  0.74 (0.17)
C-SUITE  0.026/0.032 (0.030)  0.022/0.025 (0.022) ([FIP (OURrs) _ 0.76(0.20)  0.81(0.15)) DATASET  MODEL CF ERROR (RM5E)
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Finding the DAG from data is an NP-hard 10 20 50 100 200 o . gi‘f{s};‘LNF g ﬁ. Eggg;
combinatorial problem drest Counte?factual predictions errors on synthetlc test datasets Comparison ‘?f the F1 score against TRIANGLE  /, ~ 4 " 19 (D: 04)
o LININ UNOUT -B- RFFIN —< RFF OUT when either the causal order or the graph 1s known. various baselines on O.0.D datasets. FiP 0.094(0.021))
 Ill-posed Inverse Problem i SR R = F1 score on . N\ CAUSAL NF 0.12(0.02)
08 : . CAREFL 0.17 (0.04
TOS ) e ofnod , . g | Vvarious We obtain SoTA results for causal SIMPSON )\ A 150 ED_M;
The uniqueness of the SCM is not always guaranteed MEastires the proportion ot nodes correctly 8 P Foblems when discovery and causal inference | FIP 0.12(0.0089)]
ranked in the causal order. = o either the causal
tasks on O.0.D test datasets.
o Obtain (at worst) an accuracy of 80% order o the \_ - Comparison of the counterfactual predictions
Question: can we improve on both limitations? ) graph is known.
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