Microsoft

A Fixed-Point Approach for Causal Generative Modeling

Meyer Scetbon, Joel Jennings, Agrin Hilmkil, Cheng Zhang, Chao Ma

- We evaluate the models on $\simeq 400$ test datasets of various sizes, newly sampled from either the distribution used during training (**in-distribution**), or from a variant with a substantial shift (**out-of-distribution**).

Evaluation of the SCM Learner ${\mathcal T}$

DATASETS	True P	True ${\cal G}$		
LIN IN	0.037 / 0.066 (0.057)	0.012 / 0.039 (0.060)		
LIN OUT	0.065 / 0.11 (0.084)	0.017 / 0.034 (0.048)		
RFF IN	0.065 / 0.10 (0.089)	0.033 / 0.059 (0.075)		
RFF OUT	0.11 / 0.12 (0.088)	0.033 / 0.042 (0.040)		
C-SUITE	0.026 / 0.032 (0.030)	0.022 / 0.025 (0.022)		

Learning Fixed-Point SCMs

 ϕ_3

Recovering Causal Orders from Observations

Goal: Infer in a zero-shot manner the causal order of variables from observations

- P_N is a generated noise distribution on \mathbb{R}^d
- *H* is a generated sequence of *d* functions H_i : \mathbb{R}
- $D \in \mathbb{R}^{m \times d}$ is obtained by sampling m i.i.d samp
- **Training**: Given $(D_1, G_1), \dots, (D_n, G_n)$ i.i.d, we train a model $\mathcal M$ that predicts the leaves of the graphs in a sequential manner.
- **Loss**: \mathcal{M} is learned by minimizing d-TOE where at each step we remove a leaf.

- **Problem Set Up**: Let $X^{(1)}, \ldots, X^{(m)}$ i.i.d samples from P_X . Our goal is to learn an
- **Training**: We learn the SCM by training \mathcal{T} on *D* ordered according to the causal order
- **Inference**: Once trained, we show that under ANM, and correctness of $\hat{\pi}$, $\hat{\mathcal{T}}$ learned converges (in the limit of infinite sample) to the true SCM generating the data.

Empirical Evaluations

Fl score on various problems when either the causal order or the graph is known.

 ϕ_2

Algorithm 1 d-TOE($\mathcal{M}, (\mathcal{D}_{tr}, \mathcal{G}_{tr})$) 1: **Input:** \mathcal{M} , $(\mathcal{D}_{tr}, \mathcal{G}_{tr})$ 2: Initialize d-TOE = 0. 3: for q = 1 to d do 4: $\boldsymbol{p} \leftarrow \mathcal{M}(\mathcal{D}_{tr}), \quad \boldsymbol{y} \leftarrow \mathcal{L}(\mathcal{G}_{tr})$

 ϕ_1

- 5: $d\text{-TOE} \leftarrow d\text{-TOE} + \mathbf{BN}(\boldsymbol{p}, \boldsymbol{y})$ 6: $\hat{\ell} \leftarrow \operatorname{argmax}_i[\boldsymbol{p}]_i, \quad \ell \leftarrow \mathcal{B}(\boldsymbol{y}, \hat{\ell})$
- 7: $\mathcal{D}_{tr} \leftarrow \mathcal{R}_1(\mathcal{D}_{tr}, \ell), \quad \mathcal{G}_{tr} \leftarrow \mathcal{R}_2(\mathcal{G}_{tr}, \ell)$ 8: end for
- 9: Return d-TOE

Benchmarking of End-to-End Pipeline

			DATASETS	LIN OU	UT RFF OUT		
DATASETS	LIN OUT	RFF OUT	DECI	0.39 (0.1	29) 0.18 (0.12)		
PC	0.47 (0.14)	0.40 (0.12)	DOWHY - AVIC FIP (OURS)	$\frac{I}{0.13(0)}$	$\begin{array}{ccc} 18) & 0.16 & (0.096) \\ \hline 10) & 0.13 & (0.096) \\ \end{array}$		
GES	0.56 (0.12)	0.37 (0.060)					
GOLEM	0.73 (0.29)	0.31 (0.13)	FIP w. G0.034 (0.048)0.042 (0.040)DOWHY W. G0.0017 (0.0017)0.088 (0.072)		$\begin{array}{ccc} 048) & 0.042 & (0.040) \\ 0.017) & 0.000 & (0.072) \end{array}$		
DECI	0.36 (0.13)	0.74(0.14)			0017) 0.088 (0.072)		
GRAN-DAG	0.29 (0.19)	0.50 (0.26)	Comparison of the counterfactual predictions				
DAG-GNN	0.61 (0.19)	0.44 (0.15)					
DP-DAG	0.17 (0.074)	0.16 (0.067)	against various baselines on O.O.D datasets.				
AVICI	0.73 (0.16)	0.74 (0.17)					
FIP (OURS)	0.76(0.20)	0.81(0.15)	DATASET	MODEL	CF ERROR (RMSE)		
Comparison of the F1 score against			TRIANGLE	CAUSAL NF	0.13 (0.02)		
				CAREFL	0.17 (0.03)		
				VACA	4.19 (0.04)		
various baselines on 0.0.D datasets.		Judidsels.		FIP	0.094(0.021)		
				CAUSAL NF	0.12(0.02)		
We obtain SoTA results for causal discovery and causal inference			SIMPSON	CAREFL	0.17 (0.04)		
				VACA	1.50 (0.04)		
				FIP	0.12(0.0089)		
tasks on	O.O.D test d	latasets.					
			Comparison	of the counte	erfactual predictions		
			on synthetic	datasets whe	n the order is known		
					TI TIC OTACT ID TITOMI		

On Machine Learning

Learning SCMs on the Ordered Variables

Goal: Learn the fixed-point SCM associated to a single dataset given the causal order

Proposed Architecture

• Causal Embedding: $\mathcal{E}: X \in \mathbb{R}^d \to [X_1 * \theta_1, ..., X_d * \theta_d] \in \mathbb{R}^{d \times D}$

• DAG Attention: $DA(Q, K) = \frac{exp((QK^T - M)/\sqrt{D})}{(\alpha v^T - M)}$, where $M = \begin{bmatrix} v & v & w & v & w \\ 0 & v & w & w \\ 0 & v & v & v \\ 0 & v & v & w \\ 0 & v & v & v \\ 0 & v &$ and $[\Im(v)]_i = v_i$ if $v_i \ge 1$, and $[\Im(v)]_i = 1$ otherwise

• Causal Encoder C_L : $h_{\ell+1} = h(DA(h_\ell, X)X + h_\ell) \in \mathbb{R}^{d \times D}$

• Causal Decoder: $\mathcal{F}: X \in \mathbb{R}^{d \times D} \to [\langle X_1, \omega_1 \rangle, \dots, \langle X_d, \omega_d \rangle] \in \mathbb{R}^d$

Model: $\mathcal{T}: X \in \mathbb{R}^d \to \mathcal{F} \circ \mathcal{C}_L(\mathcal{E}(X)) \in \mathbb{R}^d$ satisfies the simple structure of fixed-point SCM.

Training: minimize the MSE $\mathbb{E}_{Z \sim P_{P_{\pi}X}} \| \mathcal{T}(Z) - Z \|^2$ where $P_{P_{\pi}X}$ is the causally ordered distribution of observations.