
We obtain SoTA results for causal 

discovery and causal inference  

tasks on O.O.D test datasets.
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Empirical Evaluations

Noise 

𝑵 ∼ 𝑃𝑵

Data 

𝑿 ∼ 𝑃𝑿 

Generative Modeling

𝑯

Goal: Learn a function 𝑯 that maps 𝑃𝑵 to 𝑃𝑿 

Examples: VAEs, GANs, Normalizing Flows, Diffusions, …

Question: what if 𝑃𝑿 admits an (unknown) structure? 

Easily 

sampleable

Samples from 𝑃𝑿 

𝑿𝟏

𝑿𝒏

𝑿 ≔ 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑇 ∼ 𝑃𝑿

…𝑋1 𝑋2 𝑋3 𝑋𝑇

𝒀 ≔ 𝑋3, 𝑋1, 𝑋2 … , 𝑋𝑇 ∼ 𝑃𝒀

…𝑌1 𝑌2 𝑌3 𝑌𝑇

Goal: Learn a function 𝑯 that maps 𝑃𝑵 to 𝑃𝑿 and that satisfies the 

unknown structure of 𝑃𝑿

Advantage: we can now simulate the effects of changes on the 

variables 𝑋𝑖 w.r.t the structured generative process 𝑯 

Causal Generative Modeling

Causality offers a reliable tool for decision-

making in generative modeling

Structural Causal Models

𝑁2

𝑁3

𝑁1

𝑋1 𝑋2

𝑋3

• Noise distribution: 𝑃𝑵

• Directed Acyclic Graph: 𝐺 

• System of Equations:

𝑋𝑖 = 𝐻𝑖 PA𝐺 Xi , N𝑖 , ∀i ∈ [ 𝑑 ] 

Generate observations

• Sample N1, 𝑁2, 𝑁3 ∼ 𝑃𝑵

• Solve 𝑋𝑖 = 𝐻𝑖(PA𝐺(Xi), N𝑖) 

Generate effects of changes

• Intervene on 𝑖 : 𝑋𝑖 ← 𝑎 

• Generate observations with the 

intervened system 

Learning SCMs from observations is hard

• Computationally Challenging

•  Ill-posed Inverse Problem

The uniqueness of the SCM is not always guaranteed

Question: can we improve on both limitations? 

Finding the DAG from data is an NP-hard 

combinatorial problem

Parameterization of SCMs

𝑁2

𝑁3
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𝑋1 𝑋2

𝑋3

A DAG (always) induces 

a causal order

Ex: 𝜋 = 𝑋1, 𝑋2, 𝑋3

Equivalent Parameterization of SCMs

• Noise Distribution: 𝑃𝑵

• Topological Ordering: 𝜋

• Map:  𝑯: x, n ∈ ℝ𝑑 × ℝ𝑑 → ℝ𝑑 s.t. 

Fixed-Point SCM: 

𝐗 = 𝑃𝜋
𝑇𝑯(P𝜋𝐗, P𝜋𝑵) 

Ja𝑐𝑥 𝐻 = Ja𝑐𝑛 𝐻 = 

Partial Identifiability of Fixed-Point SCMs

Problem (Strong Identifiability): Given 𝜋 and 𝑃𝑿 , can we recover 

uniquely the fixed-point SCM?

Permutation matrix

Associated to  𝜋

Theorem (Monotonic Model)

If 𝐻 is monotonic increasing w.r.t the noise, and 𝑃𝑵 is fixed, then 

there exists a unique SCM generating 𝑃𝑿 with order 𝜋 and noise 𝑃𝑵 

Problem (Weak Identifiability): Given 𝜋 and 𝑃𝑿 , can we recover 

uniquely the interventional and counterfactual distributions?

Theorem (Invertible Model)

• If 𝐻 is invertible and 𝐶1, then the interventional and 

counterfactual distributions are uniquely identifiable.

• Also, one can choose arbitrarily the noise distribution 𝑃𝑵, 

e.g. standard Gaussian.

Recovering Causal Orders from Observations Learning SCMs on the Ordered Variables

𝐺𝑃𝑵 𝑯

𝝓𝟏 𝝓𝟐 𝝓𝟑

𝑫

Training: Given 𝐷1, 𝐺1 , … , 𝐷𝑛, 𝐺𝑛  i.i.d, we 

train a model ℳ that predicts the leaves of 

the graphs in a sequential manner.

Dataset Generative Process   

• 𝐷 ∈ ℝ𝑚×𝑑 is obtained by sampling 𝑚 i.i.d samples 𝑵(𝑘) ∼ 𝑃𝑵

and then by solving for each 𝑘:  

• 𝑃𝑵 is a generated noise distribution on ℝ𝑑

• 𝐺 is a generated DAG

• 𝑯 is a generated sequence of 𝑑 functions 𝐻𝑖:  ℝ𝑑 → ℝ

𝑋𝑖
(𝑘)

= 𝐻𝑖 PA𝐺 Xi
(𝑘)

, N𝑖
(𝑘)

, ∀i ∈ [ 𝑑 ] 

Loss: ℳ is learned by minimizing d-TOE

where at each step we remove a leaf.

Proposed Architecture

• Causal Embedding: ℰ: 𝑿 ∈ ℝ𝑑 → 𝑋1 ∗ 𝜃1, … 𝑋𝑑 ∗ 𝜃𝑑 ∈ ℝ𝑑×𝐷

• DAG Attention: DA 𝑸, 𝑲 =
𝒆𝒙𝒑((𝑸𝑲𝑻−M)/√𝐷)

ℑ(𝒆𝒙𝒑
𝑸𝑲𝑻−M

𝐷
1𝑑)

, where M = 

and ℑ 𝑣 𝑖 = 𝑣𝑖 if 𝑣𝑖 ≥ 1, and ℑ 𝑣 𝑖 = 1 otherwise

• Causal Encoder 𝒞𝐿: 𝒉ℓ+𝟏 = ℎ 𝐷𝐴 𝒉ℓ, 𝑿 𝑿 + 𝒉ℓ ∈ ℝ𝑑×𝐷

• Causal Decoder: ℱ: 𝑿 ∈ ℝ𝑑×𝐷 → ⟨𝑋1, 𝜔1⟩, … , ⟨𝑋𝑑 , 𝜔𝑑⟩ ∈ ℝ𝑑

Model:  𝒯: 𝑿 ∈ ℝ𝑑 → ℱ ∘ 𝒞𝐿(ℰ(𝑿)) ∈ ℝ𝑑 satisfies the simple 

structure of fixed-point SCM.
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Training: minimize the MSE   𝔼𝒁∼𝑃𝑃𝜋𝑿
𝒯 𝒁 − 𝒁 2 where 𝑃𝑃𝜋𝑿 

is the causally ordered distribution of observations.

End-to-End Pipeline

Goal: Infer in a zero-shot manner the causal 

order of variables from observations

Goal: Learn the fixed-point SCM associated to a single dataset 

given the causal order

Training: We learn the SCM by training 𝒯 

on 𝐷 ordered according to the causal order 

predicted by ℳ on 𝐷.

Problem Set Up: Let 𝐗(1), … , 𝑿(𝒎) i.i.d 

samples from 𝑃𝑿. Our goal is to learn an 

SCM generating 𝑃𝑿.

• We evaluate the models on ≃ 400 test datasets of various sizes, newly sampled from either the distribution 

used during training (in-distribution), or from a variant with a substantial shift (out-of-distribution).

Evaluation of the Leaf Predictor 𝓜 Evaluation of the SCM Learner 𝓣

Benchmarking of End-to-End Pipeline

TOS measures the proportion of nodes correctly 

ranked in the causal order.

Obtain (at worst) an accuracy of 80% 

on problems with 200 nodes.

Counterfactual predictions errors on synthetic test datasets 

when either the causal order or the graph is known.
Comparison of the F1 score against 

various baselines on O.O.D datasets.

Comparison of the counterfactual predictions 

on synthetic datasets when the order is known.

No DAG 

required

SCM 

Learner 𝒯

Leaf 

Predictor ℳ ො𝜋
Remove the 

predicted leaf

Predicted Causal

Order

Predicted

Dataset

෠ℓ
𝐷

Leaf Predicted at 

step 𝑞

Comparison of the counterfactual predictions 

against various baselines on O.O.D datasets.

• We train ℳ on ≃ 200𝑘 datasets with 𝑛 = 200 samples and 𝑑 = 50 dimensions.

F1 score on 

various 

problems when 

either the causal 

order or the 

graph is known.
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Loss to 

backpropagate

Inference: Once trained, we show that under 

ANM, and correctness of ො𝜋, ෠𝒯 learned 

converges (in the limit of infinite sample) to 

the true SCM generating the data.
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