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Q1 : How can a Convolutional Network achieve impressive prediction performance
with high dimensional data ?

Q2 : What is the effect of depth on the statistical performance of a Convolutional
Network ?

ImageNet : dimension ' 1e6 1

1. Image taken from https ://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5
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Reproducing Kernel Hilbert Space (RKHS) associated to a
Convolutional Network (CNN)

Spectral Analysis of a CNN

Functional ANOVA Decomposition

Control of the Eigenvalue Decay

Statistical Performance of the Regularized Least Squares (RLS)

What is the dimension really captured by the network ?

How do the convergence rates scale with respect to the number of layers ?
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RKHS associated to a CNN
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Convolutional Network

INPUT
1×32×32

6×14×14

6×28×28
784

OUTPUT
26

Convolution 
+

Non-Linear activation 𝜎!

Vectorization Fully ConnnectionPooling

16×10×10

Convolution 
+

Non-Linear activation 𝜎"

16×7×7

Pooling

FN : function space generated by a CNN with a fixed number of layers N and
non-linear activations (σi)

N
i=1
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RKHS induced by a CNN

Image space : I :=
∏n
i=1 S

d−1 ⊂ RD

𝑟

𝑟

ℎ

Pixel (𝑖, 𝑗) ∈ 𝐴

𝑤

Patch 
Extraction

Patch 
Normalization

= 𝐗

𝐗(𝑖)

Define for all i, fi(x) =
∑

t≥0
|σ(t)

i (0)|
t! xt

Convolutional Kernel

KN (X,X′) := fN ◦ ... ◦ f2

(
n∑
i=1

f1
(
〈Xi,X

′
i〉Rd

))

HN : RKHS associated to convolutional kernel KN
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Hilbertian envelope of FN
FN ⊂ HN : Any function generated by a CNN is an element of the RKHS HN

Network width : HN does not depend on the number of filters considered at
each hidden layer.

Kernel universality : HN is dense in C(I) w.r.t. the uniform norm ‖ · ‖∞.

As a result we have :

inf
f∈HN

R(f) := E[(f(X)− Y )2] = R∗

where R∗ is the Bayes risk.
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Spectral Analysis of CNNs
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Functional ANOVA Decomposition

Tensor-Product Space ANOVA model. A n-dimensional function f can be
decomposed as

f(X1, ...,Xn) = C +

n∑
i=1

fi(Xi) +

n∑
i<j

fi,j(Xi,Xj) + . . .

C : a constant.

d∗ : the highest order of interactions allowed by the model.

fi ∈ H where H is an RKHS : main effect

∀A ⊂ {1, ..., n} with |A| ≤ d∗, fA ∈ H⊗|A|
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Functional ANOVA Decomposition

Mercer Decomposition

KN (X,X′) =
∑

k1,...,kn≥0
1≤lki≤αki,d

µ(ki,lki )
n
i=1
e(ki,lki )

n
i=1

(X)e(ki,lki )
n
i=1

(X′)

e(ki,lki )
n
i=1

(X) :=
n∏
i=1

Y
lki
ki

(Xi)

Xi ∈ Sd−1 : a patch

(Y l
m) : Orthonormal basis of spherical harmonics
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Functional ANOVA Decomposition

Proposition
Let N ≥ 2, f1 a real value function that admits a Taylor decomposition around 0
fN ◦ .... ◦ f2 a polynomial of degree a ≥ 1. Then by denoting d∗ := min(a, n),

|{i : ki 6= 0}| > d∗ =⇒ µ(ki,lki )
n
i=1

= 0

.

µ(ki,lki )
n
i=1

vanish as soon as the interactions captured by the eigenfunctions
associated is too large relatively to the depth of the network.

d∗ : the highest order of interaction allowed by the network.
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Functional ANOVA Decomposition

FN is highly structured
A CNN is a constructive way to build a functional ANOVA model where :

the main effects live in a Hilbert space completely determined by (σi)
N
i=1

the highest order of interaction d∗ is controlled by the depth of the network.
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Control of the Eigenvalue Decay

Mercer Decomposition

KN (X,X′) =
∑

k1,...,kn≥0
1≤lki≤αki,d

µ(ki,lki )
n
i=1
e(ki,lki )

n
i=1

(X)e(ki,lki )
n
i=1

(X′)

where

µ(ki,lki )
n
i=1

:=
∑
q≥0

aq
∑

α1,...,αn≥0
n∑

i=1
αi=q

(
q

α1, ..., αn

) n∏
i=1

λki,αi

and

λk,α =
|Sd−2|Γ((d− 1)/2)

2k+1

∑
s≥0

[
d2s+k

dt2s+k
|t=0

fα1 (t)

(2s+ k)!

]
(2s+ k)!

(2s)!

Γ(s+ 1/2)

Γ(s+ k + d/2)
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Control of the Eigenvalue Decay

(bm)m≥0 : Coefficient in the Taylor series of f1.

Assume that there exists c1, c2, r > 0 such that for all m ≥ 0

c2r
m ≤ bm ≤ c1rm.

fN ◦ .... ◦ f2 : polynomial of degree a ≥ 1.
d∗ = min(a, n) : highest order of interaction.

Proposition

There exists C1, C2 > 0 and 0 < γ < q constants such that for all m ≥ 0 :

C2e
−qm

1
(d−1)d∗ ≤ µm ≤ C1e

−γm
1

(d−1)d∗

14 / 20



Statistical Performance of RLS
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What is the dimension really captured by the network ?

d : dimension of the extracted patches in Sd−1

d∗ : highest order of interaction allowed by the network
f∗(x) = E(Y |X = x) : the conditional mean
fHN ,λ : the solution of

min
f∈HN

{
1

`

∑̀
i=1

(f(xi)− yi)2 + λ‖f‖2HN

}
.

Learning Rates
For a well chosen λ` we obtain with high probability that :

R(fHN ,λ`)−R(f∗) .
log(`)(d−1)d

∗

`
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What is the dimension really captured by the network ?

The effect of the dimension
The learning rates are minimax optimal

The learning rates are free-dimension with respect to the number of
parameters (or filters).

The dimension captured by the network : (d− 1)× d∗ � D
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How do the rates scale with respect to the number of layers ?

The learning rates obtained exhibit two regimes of interest :
Regime 1 : if d∗ � n, the optimal rates obtained are close the optimal rates
for estimating multivariate functions in d dimensions where d is the patch size.
Therefore the rates obtained are almost dimension free.

Regime 2 : As soon as fN ◦ .... ◦ f2 is a polynomial function with degree
higher than n, then adding layers to the network will not change change the
rates. Thus there is a regime in which adding layers does not affect the rates
and allows the function space of target functions to grow.

18 / 20



Conclusion

Designed a universal kernel KN such that its RKHS HN contains FN .

Obtained a Mercer decomposition of the kernel KN .

the functional ANOVA structure of FN where d∗ and the main effects are
completely determined by (σi)

N
i=1.

control of the eigenvalue decay in several decay regimes.

Showed the learning rates of RLS on hypothesis space HN

Convergence rates are minimax optimal from a nonparametric learning
viewpoint.

Regime 1 : The rates are almost dimension free.

Regime 2 : The rates remain unchanged, while approximation power is
increased, as we added more layers.
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Thank you
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