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Q1 : How can a Convolutional Network achieve impressive prediction performance
with high dimensional data ?

Q2 : What is the effect of depth on the statistical performance of a Convolutional
Network ?

ImageNet : dimension ~ 1e6!
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e Reproducing Kernel Hilbert Space (RKHS) associated to a
Convolutional Network (CNN)

e Spectral Analysis of a CNN
e Functional ANOVA Decomposition

o Control of the Eigenvalue Decay

e Statistical Performance of the Regularized Least Squares (RLS)

o What is the dimension really captured by the network ?

o How do the convergence rates scale with respect to the number of layers?
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RKHS associated to a CNN
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Convolutional Network
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o Fy : function space generated by a CNN with a fixed number of layers N and
non-linear activations (ai)fil
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RKHS induced by a CNN

o Image space : 7 := [[IL, S¢! C RP

w

»
. Di o
—
n
Patch
§ Earaction
Pixel (i,) € A

10" (0)]
t!

X(@)

CL't

o Define for all i, fi(z) =50

Convolutional Kernel

KN(X,X’) o= fN 0...0 f2 (Z f1 (<X¢,X;>Rd)>

i=1

o Hy : RKHS associated to convolutional kernel Ky
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Hilbertian envelope of Fy

Fn C Hy : Any function generated by a CNN is an element of the RKHS Hy

o Network width : Hy does not depend on the number of filters considered at
each hidden layer.

e Kernel universality : Hy is dense in C(Z) w.r.t. the uniform norm || - ||sc.

As a result we have :

ot R(f) = E[(f(X) - Y)Y =R

where R* is the Bayes risk.
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Spectral Analysis of CNNs
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Functional ANOVA Decomposition

Tensor-Product Space ANOVA model. A n-dimensional function f can be
decomposed as

n n
Xy, X)) =C+ > fiXa)+ > i (X Xg) + ...
i=1 i<j
e (' : a constant.
o d* : the highest order of interactions allowed by the model.
o f; € H where H is an RKHS : main effect

o VA C {1,...,n} with |A| < d*, f4 € H®
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Functional ANOVA Decomposition

Mercer Decomposition

EnXX) = 3 i, ki) (X)€@, (X)
k1,-~-7kn20
1<lg, <aw,,d

le.
° ey, (X) =11 Y, (X,)

o X; € 591 . a patch

o (Y}}) : Orthonormal basis of spherical harmonics

10/ 20



Functional ANOVA Decomposition

Proposition

Let N > 2, f1 a real value function that admits a Taylor decomposition around 0
fn o....o fa a polynomial of degree a > 1. Then by denoting d* := min(a,n),

Hi: ki # 0} >d° = pug =0

islky )it
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Functional ANOVA Decomposition

Fn is highly structured
A CNN is a constructive way to build a functional ANOVA model where :

o the main effects live in a Hilbert space completely determined by (O'i)i]\il

o the highest order of interaction d* is controlled by the depth of the network.
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Control of the Eigenvalue Decay

Mercer Decomposition

Kn(X,X') = Z F e i, Yy €k )7y (KD e€h by, (X)
k1,....,kn>0
1<l <oy, 4

where
q n
>0 ai,..an>0 NObrOn/ gy
> ai=q
i=1
and
- |S420((d - 1)/2) d?srk | @) ] @s+k)! T'(s+1/2)
R = 2k+1 A2t =025 1 | (28) T(s+ k+d/2)

s>0
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Control of the Eigenvalue Decay

@ (by)m>0 : Coefficient in the Taylor series of f.

Assume that there exists ¢q, ca,7 > 0 such that for all m >0
cor™ < by, < err™.

o fyo...o fy: polynomial of degree a > 1.

e d* = min(a,n) : highest order of interaction.

There exists C1,Cy > 0 and 0 < v < q constants such that for all m >0 :

1 1
_ (d—1)d* _ (d—1)d*
Coe™ ™ < pm < Cre™ ™™
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Statistical Performance of RLS
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What is the dimension really captured by the network ?

o d : dimension of the extracted patches in S4~1
o d* : highest order of interaction allowed by the network
o f*(z) =E(Y|X = z) : the conditional mean

o fry, : the solution of

i=1

¢
frggjv {2 Z(f(ﬂﬁi) —yi)® + )\HfH%{N} '

Learning Rates

For a well chosen \; we obtain with high probability that :

(d—1)d*
R(fmya) — R 5 22
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The effect of the dimension

o The learning rates are minimax optimal

17 /20



What is the dimension really captured by the network ?

The effect of the dimension

o The learning rates are minimax optimal

@ The learning rates are free-dimension with respect to the number of
parameters (or filters).

17 /20



What is the dimension really captured by the network ?

The effect of the dimension

o The learning rates are minimax optimal

@ The learning rates are free-dimension with respect to the number of
parameters (or filters).

@ The dimension captured by the network : (d — 1) x d* < D
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How do the rates scale with respect to the number of layers ?

The learning rates obtained exhibit two regimes of interest :

o Regime 1 : if d* < n, the optimal rates obtained are close the optimal rates
for estimating multivariate functions in d dimensions where d is the patch size.
Therefore the rates obtained are almost dimension free.

@ Regime 2 : As soon as fy o.... 0 fy is a polynomial function with degree
higher than n, then adding layers to the network will not change change the
rates. Thus there is a regime in which adding layers does not affect the rates
and allows the function space of target functions to grow.
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Conclusion

o Designed a universal kernel Ky such that its RKHS Hy contains Fy.
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Conclusion
o Designed a universal kernel Ky such that its RKHS Hy contains Fy.

o Obtained a Mercer decomposition of the kernel K.

o the functional ANOVA structure of Fy where d* and the main effects are
completely determined by (o) ;.

e control of the eigenvalue decay in several decay regimes.

o Showed the learning rates of RLS on hypothesis space Hy

o Convergence rates are minimax optimal from a nonparametric learning
viewpoint.

o Regime 1 : The rates are almost dimension free.

o Regime 2 : The rates remain unchanged, while approximation power is
increased, as we added more layers.
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Thank you

Q>
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